Что такое xl в электротехнике. Формулы тоэ. Основные параметры цепей трехфазного переменного тока

В цепь переменного электрического тока входят активные (содержащие внутренние источники энергии) и пассивные элементы (потребители энергии). К пассивным элементам относят резисторы и реактивные устройства.

Виды пассивных элементов

В электротехнике рассматривают два типа резисторов: активное и реактивное сопротивление. Активным – обладают приборы, в которых энергия электрического тока преобразуется в тепловую. В физике оно обозначается символом R. Единица измерения – Ом.

Этой формулой можно пользоваться для расчёта по мгновенным значениям тока и напряжения, максимальным или действующим.

Реактивные устройства энергию не рассеивают, а накапливают. К ним относятся:

  • катушка индуктивности;
  • конденсатор.

Реактивное сопротивление обозначается символом Х. Единица измерения – Ом.

Катушка индуктивности

Представляет собой проводник, выполненный в форме спирали, винта или винтоспирали. Благодаря высокой инерционности, прибор используют в схемах, которые применяются для уменьшения пульсаций в цепях переменного тока и колебательных контурах, для создания магнитного поля и т.д. Если она имеет большую длину при небольшом диаметре, то катушку называют соленоидом.

Для вычисления падения напряжения (U ) на концах катушки используют формулу:

U = –L·DI/Dt, где:

  • L – индуктивность прибора, измеряется в Гн (генри),
  • DI – изменение силы тока (измеряется в амперах) за промежуток времени Dt (измеряется в секундах).

Внимание! При любом изменении тока в проводнике возникает ЭДС самоиндукции, которая препятствует этому изменению.

Вследствие этого в катушке возникает сопротивление, которое называется индуктивным.

В электротехнике обозначается Х L и рассчитывается по формуле:

где w – угловая частота, измеряется в рад/с.

Угловая частота является характеристикой гармоничного колебания. Связана с частотой f (количество полных колебаний в секунду). Частота измеряется в колебаниях в секунду (1/с):

w = 2 · p · f.

Если в схеме используется несколько катушек, то при их последовательном соединении общее Х L для всей системы будет равно:

XL = XL1 + XL2 + …

В случае параллельного соединения:

1/XL = 1/XL1 + 1/XL2 + …

Закон Ома для такого соединения имеет вид:

где UL – падение напряжения.

Помимо индуктивного, устройство обладает и активным R.

Электрический импеданс в этом случае равен:

Емкостной элемент

В проводниках и обмотке катушки, кроме индуктивного и активного сопротивлений, присутствует и емкостное, которое обусловлено наличием ёмкости в этих приборах. Кроме резистора и катушки, в схему может быть включен конденсатор, который состоит из двух металлических пластин, между которыми размещён слой диэлектрика.

К сведению. Электрический ток протекает за счёт того, что в устройстве проходят процессы заряда и разряда пластин.

При максимальном заряде на пластинах прибора:

За счёт того, что резистивное устройство может накапливать энергию, его используют в приборах, которые стабилизируют напряжение в цепи.

Возможность накапливать заряд характеризуется ёмкостью.

Реактивное сопротивление конденсатора (ХС) можно рассчитать по формуле:

XC = 1/(w·C), где:

  1. w – угловая частота,
  2. С – ёмкость конденсатора.

Единица измерения ёмкости – Ф (фарада).

Учитывая, что угловая частота связана с циклической частотой, расчет значения реактивного сопротивления конденсатора можно выполнить по формуле:

XC=1/(2·p·f·C).

Если в цепи последовательно соединены несколько устройств, то общее X С системы будет равно:

XС = XС1 + XС2 + …

Если соединение объектов параллельное, то:

1/XC = 1/XC1 + 1/XC2+…

Закон Ома для этого случая записывается следующим образом:

где UС – падение напряжения на конденсаторе.

Расчёт цепи

При последовательном соединении I = const в любой точке и, согласно закону Ома, его можно рассчитать по формуле:

где Z – электрический импеданс.

Напряжение на устройствах рассчитывается следующим образом:

UR = I · R, UL = I · XL, UC = I · XC.

Вектор индуктивной составляющей напряжения направлен в противоположную сторону от вектора емкостной составляющей, поэтому:

следовательно, согласно расчётам:

Внимание! Для вычисления значения импеданса можно воспользоваться «треугольником сопротивлений», в котором гипотенузой является значение Z, а катетами – значения X и R.

Если в цепь подключены и конденсатор, и катушка индуктивности, то, согласно теореме Пифагора, гипотенуза (Z ) будет равна:

Так как X = XL XC , то:

При решении электротехнических задач часто импеданс записывают в виде комплексного числа, в котором действительная часть соответствует значению активной составляющей, а мнимая – реактивной. Таким образом, выражение для импеданса в общем виде имеет вид:

где i – мнимая единица.

Для онлайн расчёта реактивного сопротивления можно использовать программу – калькулятор, которую можно найти в сети Интернет. Подобных сервисов достаточно много, поэтому вам не составит труда подобрать удобный для вас калькулятор.

Благодаря таким Интернет сервисам, можно быстро выполнить нужный расчёт.

Видео

Электрическое сопротивление материала определяется по формулам:

Электрическое сопротивление, Ом, материала

R = U/I, где U - напряжение, В; I - сила тока, А.

Удельное электрическое сопротивление, Ом·м,

ρ=Rs/l. S – сечение проводника, м² ; l – длина проводника, м.

Под удельным электрическим сопротивлением материала понимают сопротивление проводника длиной 1 м и сечением 1 м² при 20°С.

Величина, обратная удельному сопротивлению, называется проводимостью:

Если вместо сечения проводника S задан его диаметр D, то сечение, м², находят по формуле

S= πD²/4, где π =3,14.

Сопротивление материала зависит от температуры. Если материал нагрет до температуры t°С, то его сопротивление, Ом, при этой температуре равно:

Rt= R0,

где R0 – сопротивление при начальной температуре t0°С, Ом; α – температурный коэффициент.

Сопротивление нескольких проводников зависит от способа их соединения. Например, при параллельном соединении сопротивление трех проводников определяется по формуле:

Rоб=R1*R2*R3/(R1R2+R2R3+R3R1)

При последовательном соединении:

Постоянный ток

Постоянный ток применяют для питания устройств связи, транзисторных приборов, стартеров автомобилей, электрокар, а также, для зарядки аккумуляторов.

В качестве источников постоянного тока используют гальванические элементы, солнечные батареи, термоэлектрогенераторы, генераторы постоянного тока.

При параллельном соединении нескольких проводников с током с равными напряжениями:

Iоб = I1+I2+…+In Uоб=U1=U2=…=Un

При последовательном соединении: Iоб = Imin; – где Imin, ток наименьшего по мощности источника тока (генератора, аккумуляторной батареи).

Uоб = U1+U2+…+Un

Основные параметры цепей однофазного переменного тока

Однофазный переменный ток промышленной частоты имеет 50 периодов колебаний в секунду, или 50 Гц. Его применяют для питания небольших вентиляторов, электробытовых приборов, электроинструмента, при электросварке и для питания большинства осветительных приборов.

Частота переменного тока, Гц:

f= 1/T = np/60, где п - частота вращения генератора, мин -1 ; р – число пар полюсов генератора.

Мощность однофазного переменного тока:

активная, Вт, Ра = IUcosφ;

реактивная, вар, Q = IUsinφ;

кажущаяся, В А, S = IU =√ (P 2 α+Q 2)

Если в цепь переменного однофазного тока включено только активное сопротивление (например, нагревательные элементы или электрические лампы), то значение силы тока и мощности в каждый момент времени определяют по закону Ома:

I=U/R; Рa = IU = I²R=U²/R.

Коэффициент мощности в цепи с индуктивной нагрузкой

Cosφ= Рa/IU= Рa/S.

Основные параметры цепей трехфазного переменного тока

Трехфазный переменный ток используют для питания большинства промышленных электроприемников. Частота трехфазного переменного тока 50 Гц.

В трехфазных системах обмотки генератора и электроприемника соединяют по схемам «звезда» или «треугольник». При соединении в звезду концы всех трех обмоток генератора (или электроприемника) объединяют в общую точку, называемую нулевой или нейтралью (рис. 5а).

При соединении в треугольник начало первой обмотки соединяют с концом второй, начало второй обмотки - с концом третьей и начало третьей - с концом первой обмотки (рис. 5б).

Если от генератора отходят только три провода, то такая система называется трехфазной трехпроводной; если от него отходит еще и четвертый нулевой провод, то систему называют трехфазной четырехпроводной.

Трехфазные трехпроводные сети используют для питания трехфазных силовых потребителей, а четырехпроводные сети – для питания преимущественно осветительных и бытовых нагрузок.

В трехфазных системах различают фазные и линейные токи и напряжения. При соединении фаз звездой линейный I и фазный Iφ токи равны:

а напряжение U =√3Uφ

При соединении треугольником

а напряжение U = Uφ.

Мощность переменного трехфазного тока:

генератора:

  • активная, Вт, Рг =√3IUcosφ ,
  • реактивная, вар, Q=√3IUsinφ
  • полная, ВА, S = √3IU.

где φ – угол сдвига фаз между фазным напряжением генератора и током в той же фазе приемника, который равен току в линии при соединении обмоток генератора звездой.

приемника:

  • активная, Вт, Рп =3UφIcosφп=√3 IUcosφп,
  • реактивная, вар, Q=√3 UφIsinφп=√3 UIsinφ
  • полная, ВА, S = √3UI.

где φ – угол сдвига фаз между фазным напряжением приемника и током в той же фазе приемника, который равен току линейному только при соединении звездой.

Подсчет количества теплоты, выделяемой при протекании электрического тока по проводнику.

Количество теплоты, Дж, выделяемой электрическим током в проводнике,

Q=I²Rt где t - время, с.

При определении теплового действия электрического тока учитывают, что 1 кВт·ч выделяет 864 ккал (3617 кДж).

Если у Вас остались вопросы – обращайтесь к нам, в авторизованный сервисный центр “Эл Ко-сервис” Мы всегда рады помочь Вам в решении возникших у Вас проблем.

1. Какими параметрами характеризуются синусоидальный ток или напряжение?

2. Каково соотношение между амплитудным и действующим значениями величин, изменяющихся во времени по синусоидальному закону?

3. С какими физическими процессами связаны понятия активного сопротивления, активной мощности? Построить векторную диаграмму напряжения и тока для участка цепи.

4. С какими физическими процессами связаны понятия реактивного сопротивления, реактивной мощности? Как величина индуктивного и емкостного реактивных сопротивлений зависит от частоты питающего напряжения?

5. Построить векторные диаграммы для участков цепи с идеальной индуктивностью и идеальной емкостью.

6. Как определяют активное, реактивное и полное сопротивления цепи, содержащей несколько последовательно включенных элементов?

7. Привести формулы для расчета активной, реактивной и полной мощностей цепи.

8. Построить треугольники напряжений, сопротивлений и мощностей для участка цепи с последовательным соединением R и L, с последовательны соединением R и C.

9. Построить векторную диаграмму для цепи, содержащей несколько последовательно включенных элементов.

6.4.2. Расчет электрических параметров цепи

Задача 1. Электрическая цепь, показанная на рис. 6.8, питается от источника синусоидального тока с частотой 200 Гц и напряжением 120 В. Дано: R = 4 Ом, L = 6,37 мГн, C = 159 мкФ.

Вычислить ток в цепи, напряжения на всех участках, активную, реактивную, и полную мощности. Построить векторную диаграмму, треугольники сопротивлений и мощностей.

Анализ и решение задачи 1

1. Вычисление сопротивлений участков и всей цепи

Индуктивное реактивное сопротивление

X L = 2πf L = 2×3,14×200×6,37·10 -3 Ом.

Емкостное реактивное сопротивление

X C = 1 / (2πf C) = 1 / (2×3,14×200×159·10 -6) Ом.

Реактивное и полное сопротивления всей цепи:

X = X L - X C = 3 Ом; Ом.

2. Вычисление тока и напряжений на участках цепи

Ток в цепи

I = U / Z = 120 / 5 А.

Напряжения на участках:

U 1 = R I = 96 В; U 2 = X L I = 192 В; U 3 = X C I = 120 В.

3. Вычисление мощностей

Активная мощность

P = R I 2 = U 1 I = 2304 Вт.

Реактивные мощности:

Q L = X L I 2 = U 2 I = 4608 ВАр; Q C = X C I 2 = U 3 I = 2880 ВАр.

Полная мощность цепи

4. Расчет цепи методом комплексных чисел

Запишем в комплексном виде сопротивление каждого элемента и всей цепи

R = 4e j0° = 4 Ом; X L = 8e +j90° = j8 Ом; X C = 5e -j90° = -j5 Ом.

Z = R + j(X L - X C) = 4 + j(8 - 5) Ом.

На комплексной плоскости в масштабе: в 1 см – 2 Ом, построим треугольник сопротивлений (рис. 6.9. а).

Из треугольника определим величину полного сопротивления Z и угол фазового сдвига φ

Ом;

.

В показательной форме полное сопротивление всей цепи запишется в виде

Z = Ze +jφ = 5e +j37° Ом.

Примем начальную фазу приложенного к цепи напряжения за нуль и определим по закону Ома ток в данной цепи

Í = Ú / Z = 120e +j0° / 5e +j37° А.

Следовательно, в данной цепи ток отстает по фазе от напряжения на угол φ. Зная величину тока I, определим мощности для отдельных элементов и всей цепи.

P = 2304 Вт; Q L = 4608 ВАр; Q C = 2880 ВАр.

.

Треугольник мощностей в масштабе: в 1 см – 1000 Вт (ВАр); (ВА), построим (рис. 6.9. б) на основе выражения для полной мощности

S 2 = P 2 + (Q L - Q C) 2 .

Для построения векторных диаграмм по току и напряжениям примем начальную фазу тока равной нулю, т.к. ток I в данной схеме является одним и тем же для всех элементов в цепи.

Í = Ie +j0° / 24e +j0° А.

Запишем выражения для напряжений в комплексной форме

Ú 1 = R Í = 96e +j0° В; Ú 2 = X L Í = 192e +j90° В;

Ú 3 = X C Í = 120e -j90° В; Ú = Z Í = 120e +j37° В.

Выберем масштабы для векторной диаграммы: в 1 см – 6 А; в 1 см – 50 В. Векторная диаграмма напряжений строится на основе второго закона Кирхгофа для данной цепи

Ú = Ú 1 + Ú 2 + Ú 3 .

Векторная диаграмма цепи показана на рис. 6.9. в. При последовательном соединении элементов построение диаграммы начинают с вектора тока Í, по отношению к которому ориентируются вектора напряжений на участках цепи: напряжение на активном сопротивлении Ú 1 совпадает с ним по направлению, напряжение на индуктивности Ú 2 опережает его на 90°, на емкости отстает на 90°. Полное напряжение Ú строится как их векторная сумма.

Дополнительные вопросы к задаче 1

1. Какой характер носит эквивалентное реактивное сопротивление цепи?

По условию задачи X L > X C , поэтому X = X L - X C имеет индуктивный характер. Обратите внимание, что реактивные сопротивления отдельных участков цепи (X L , X C) могут быть больше ее полного сопротивления, так в данном случае X L > Z.

2. Как изменяется режим работы цепи при изменении частоты питающего напряжения?

От частоты зависят реактивные сопротивления: X L прямо пропорционально частоте f, X C обратно пропорционально f. В рассматриваемой схеме X L > X C , поэтому при росте частоты X возрастает, ток уменьшается и возрастает угол φ его отставания от напряжения. При уменьшении частоты X уменьшается и при некотором ее значении X = 0, т.е. схема ведет себя как чисто активное сопротивление (режим резонанса напряжений, при котором U L = U C , Z = R и ток наибольший). При дальнейшем уменьшении частоты X C > X L , Z возрастает, I уменьшается, схема ведет себя как активно-емкостное сопротивление.

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным , а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида - индуктивные и емкостные .

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току - Z , которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения U L (напряжение на индуктивном сопротивлении) и напряжения U R (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) - схема цепи; б) - сдвиг фаз тока и напряжения; в) - треугольник напряжений; д) - треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов U L и U R . Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор U AB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью . .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Рисунок 4. Полное сопротивление цепи содержащей R, L и C . а) - схема цепи; б) - треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (X L или X C преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

(5)

(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов . а) - параллельное соединение R и L; б) - параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

(7)

Приводя к общему знаменателю подкоренное выражение, получим:

(8)

(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура .

Формула полного сопротивления для этого случая будет:

(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

(14)

где L-индуктивность катушки в Гн;

С-емкость конденсатора в Ф;

R-активное сопротивление катушки в Ом.

Данный раздел основных формул ТОЭ предназначен для начинающих, как для студентов высших учебных заведений изучающих курс физики по электротехники, так и просто для интересующихся общей электротехникой /ТОЭ/ с примерами и комментариями автора:

Прежде чем перейти к формулам, обращу Ваше внимание на буквенное обозначение в ТОЭ, в разных учебниках по ТОЭ, мягко говоря, обозначение довольно произвольное, нет единого требования по данному вопросу в электротехнике. Особенно заметна разность обозначения в комплексных числах (как грибы в лесу, как только их не называют в разных местностях). Поэтому определимся сразу с буквенным обозначением : 😥

При расчётах всегда приводить все значения в одну единицу, например если расчеты по мощности в ваттах, соответственно напряжение в вольтах, сопротивление в омах и т.д.

  • А теперь формулы по электротехнике (ТОЭ) часто применяемые для расчетов (дома, на работе), рассмотрим в порядке от простых к очень простым, для студенческого сообщества выложу отдельно сложные и очень сложные, и напишу целую лекцию по ТОЭ.

ФОРМУЛЫ ПОСТОЯННОГО ТОКА

Закон Ома для участка цепи и всей цепи постоянного тока:

Пример для расчета сопротивления проводника (подробнее можете посмотреть, что такое величина удельного сопротивления проводника на стр . понятия и определения ):

Мощность в цепи постоянного тока, здесь нет ничего сложного, как и все в постоянном токе, замечу только, что значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, единица мощности (Р) равна -1 кВт = 1000 Вт:

    • На заметку д ля любознательных, можно например, электрическую мощность пересчитать в механическую и наоборот: 1 кВт*ч = 367000 кгс*м; 1кВт = 102кгс*м/с, т.е. за 1 кВтч. Т.е. можно поднять груз массой 367 кг на высоту 1 км, или 102 кг за 1 сек. на один метр .

ФОРМУЛЫ ПЕРЕМЕННОГО ТОКА

В отличие от постоянного тока, особенностью переменного тока является то, что электрический ток с течением времени изменяется по величине и направлению. Элементы такой электрической цепи влияют на амплитуду тока и на его фазу. Условное обозначение переменного тока на электроприборах ̴ ( англ . alternating current и обозначается латинскими буквами АС):

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны, поэтому далее формулы тоэ будут носить более учебный характер, чем практический, иначе говоря для учащихся и просто для любознательных.


Продолжение формулы тоэ:

См. также ниже продолжение раздела формулы:

перейти: краткое описание страницы — электрический ток (I, ампер), электродвижущая сила (ЭДС, E=A/q=Дж/Кл=В, вольт), электрическое напряжение (U, вольт), электрическая энергия и мощность (Eq, Дж, джоуль) и ватт (Р, Вт, ватт)…

Перейти: краткое описание страницы пассивные элементы цепи (резистор, катушка индуктивности и конденсатор), их основные характеристики и параметры…

Автор сайта надеяться, что информация Вам будет полезна, как доступно простая, так и более углублённая в других разделах сайта. Не забывайте просмотреть рекламу от гугл, реклама для Вас бесплатно, а мне развитие сайта, удачи.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!