Какая цель создания информационной системы. Создание информационных систем. классификация Информационных систем


В настоящее время информационные потоки на автотранспорте представляют собой самостоятельный многофункциональный рабочий инструмент, который влияет на всю работу автотранспорта. Существует множество стандартов, которые позволяют структурировать информацию, которая необходима для обеспечения организации перевозочного процесса.

АСУ служат для автоматизированной обработки, передачи и хранения данных . В настоящее время важным фактором развития АСУ является сохранность как самой информации, находящейся в системе, так и защита авторских прав создателей базы данных.


    1. ^ История создания АСУ в РФ.
Начинается со строительством первого Московского завода ЖБИ. Необходимость четкого и координированного процесса перевозок продукции этого завода потребителям была вызвана свойствами продукции (жидкий цемент). Для строительства монолитных цементных оснований многоэтажных зданий на подвижных грунтах необходимо организовать подвоз цемента, таким образом, и в таких количествах, чтобы избежать послойного его застывания.

Для решения этой проблемы было разработано расписание движения груженых и порожних автомобилей и система контроля, которая включала в себя систему контрольных постов и пропускных пунктов.

Особую роль становления АСУ на АТ сыграла РККА (рабоче-крестьянская Красная Армия). Для обеспечения снабжения войсковых соединений была разработана система «Ритм» в 1928 году. Суть системы состояла в автоматическом сборе и хранении информации потребностей соединений Красной армии. Самый современный компьютер того времени работал на вакуумных проводниках и занимал этажное здание площадью 1700 м 2 . Обработка информации была электромеханической. Дальнейшее усовершенствование средств электронной обработки информации было вызвано развитием ядерной и химической промышленности.

С применением полупроводников в 60-70-е годы предполагалось полностью заменить человека АСУ. В СССР в начале 60-х годов разрабатывались АСУ для перевозки технологических грузов, перевозки грузов в маршрутах, а также разрабатывалась система управления технологическим циклом (описание – книга Шмулевича).

В настоящее время АСУ разрабатываются на основе компьютерных сетей. На сегодняшний день существует строгая иерархия и классификация информации на промышленном транспорте, а также систем ее кодирования. Самой наглядной системой кодирования информации на промышленном транспорте является ШТРИХКОД. Кроме того, с 93-го года ведутся работы по унификации всех систем передачи и обработки данных.

Наиболее распространенной являются промышленные компьютерные сети на основе витой пары. Основным недостатком АСУ являются высокая стоимость элементов оборудования и программного обеспечения. Кроме высокой стоимости применения автоматических систем управления ограничивается неразвитостью систем ввода и обновления данных. Несмотря на большое количество считывающих устройств, и датчиков, нет систем, которые могли бы функционировать в большом промышленном мегаполисе с достаточной надежностью.


  1. ^ Этапы создания АСУ.
Разработка АСУ происходит в 4-е этапа:

I этап : постановка задачи – состав 1-го этапа: На предварительном этапе создания АСУ производится сбор информации об элементах, которые предполагается соединить в одну информационную сеть. Изучается структура вновь возникающего производственного комплекса. Рассматриваются связи элементов комплекса между собой и с внешними источниками. Определяются задачи и функции каждого элемента, а также всего комплекса. Производятся измерения информационных потоков, а также коэффициента управляемости системы:

t у – продолжительность восприятия системой управляющего распоряжения,

t с – время выполнения системой управляющего распоряжения.

При определении основных функций и элементов, входящих в технологическую цепочку выявляются следующие функции и задачи:


  1. функции и задачи, которые не входят в конфликт с функциями и задачами других систем и всего цикла в целом.

  2. функции и задачи, нейтральные функциям и задачам других систем и цикла в целом,

  3. функции и задачи, конфликтующие с функциями и задачами других подсистем и всего цикла в целом
II этап – проектный этап – состав – Разрабатывается иерархическая система подчинения всех подразделений, включаемых в систему управления, выбираются средства связи между ними. Разрабатывается техническое оснащение мест работы. Разрабатывается техническое оснащение всех элементов информационной сети.

III этап – внедрение. На этапе внедрения производится сборка оборудования.

IV этап – отладка. Отладка программного обеспечения, его корректировка и дальнейшее программное сопровождение.


  1. ^ Поколения вычислительных машин.
В начале 17 века возникла необходимость в сложных вычислениях. Потребовались: счетные устройства, способные выполнять большой объем вычислений с высокой точностью. В 1642 году французский математик Паскаль сконструировал первую счетную машинку.

В 1830 году английский ученый Бэйдж предложил идею первой программированной вычислительной машинки. Она должна была приводиться в действие при помощи пара, а программы кодировались при помощи перфокарты. Реализовать идею не удалось из-за невозможности изготовления некоторых деталей.

В 1930 году американский ученый Буш собрал первый дифференциальный анализатор. Это был первый в мире компьютер. Эта машина использовалась для обработки результатов переписи населения.

В 1944 году для военных нужд был создан первый в мире цифровой компьютер Марк 3. Размеры его 1,5 на 2,5 метра. Он состоял из 750 тысяч деталей. Производительность: за 4 секунды мог перемножить 2-а 23 –разрядных числа.

Следующей полностью электронный компьютер – 1946 год. Производительность 5 тысяч операций сложения и 300 операций умножения в секунду. Размер 30 м в длину и 85 м 3 , вес 30 тонн. Состоял из 18 тысяч электронных ламп.

Первая машина с собственной памятью называлась Эдсон 1949 год. В качестве носителя информации использовалась магнитная лента.


    1. ^ Аналоговые вычислительные машины (АВМ).
В АВМ все математические величины представляются как непрерывные. Главным образом в качестве переменной выступает напряжение электрической цепи. Изменение переменных происходит по тем же законам, что и изменение заданной функций.

В качестве метода изменения информации в этих машинах создается модель-объект. Результатами вычислений является показания осциллографа, зафиксированные измерительными приборами.

Достоинства АВМ:


  1. высокая скорость регулирования задач

  2. простота конструкции

  3. легкость подготовки задачи к решению

  4. наглядность протекания и следования процессов

  5. возможность изменения параметров время исследования
Недостатки АВМ:

  1. малая точность полученных результатов

  2. ограниченная решаемость задач

  3. ручной ввод решаемой задачи.

  4. большой объем задействованного оборудования растущих с увеличением сложности задач.

    1. Электронно-вычислительные машины (ЭВМ).
В отличие от АВМ в ЭВМ числа представляются в виде последовательности цифр в двоичном виде, то есть состоят из последовательности 1 и 0.

ЭВМ делятся на большие, мини и микро.

Достоинства ЭВМ:


  1. высокая точность вычислений

  2. универсальность

  3. автоматизированный ввод информации

  4. независимость количества оборудования от сложности задачи
Недостаток ЭВМ.

  1. сложность подготовки задач к решению (необходимость знания методов программирования и решения задач)

  2. недостаточная наглядность протекания процессов

  3. сложность структуры ЭВМ, эксплуатация и техническое обслуживание компьютера.

  1. Применение информационных систем для работы с пространственной информацией.

    1. Географическая информация систем.
Областей применения географической информации систем (ГИС) существует великое множество, на сегодняшний день в мире существует независимо множество пакетов программ для работы с дисками. Эти системы позволяют собирать в одну общую сеть расположения на значительной территории объемы управления.

Основные сферы применения ГИС:


  1. управление земельными ресурсами, земельными кадастрами

  2. инвентаризация и учет объектов распределения производительности инфраструктуры и управления ими.

  3. проектирование инженерные изыскания и планирование в градостроительстве, архитектуре, промышленности и транспортном строительстве.

  4. тематическое картографирование

  5. картография, навигация и управление движением.

  6. геология, минерально-сырьевые ресурсы и горнодобывающая промышленность

  7. планирование и оперативное управление перевозками

  8. планирование и развитие транспортных и телекоммуникационных сетей

  9. маркетинг и анализ рынка
Наиболее важное значение имеет ГИС, связанные с задачами управления и принятия решений. На этот тип задач приходится максимальное число реализованных и находящихся в режиме эксплуатации систем, в том числе наибольшие по числу пользователей объемом информации.

Для образования ГИС используется в качестве информационно-справочных систем. Эффективность применения достигается за счет всякой наглядности и удобства доступа к информации.


      1. ^ Примеры требований к данным.
Для поиска оптимального пути, оптимального маршрута необходимо предоставление данных для машины и для пользователя должны быть взаимопонятны и просты в использовании. В ГИС данные разнятся в зависимости от решаемых задач, от их источника технологического ввода. Для решения этой сложной многофункциональной задачи применяются различные коммуникационные и информационные процессы.

Наряду с энерго- и фонды вооруженностью современному производству необходимо вооруженность определяющая средств степени применения прогрессивных информационных технологий. Особое место в реализации новых технологий занимает компьютер, а также информационные вычислительные сети.

Компьютерные сети на сегодняшний день представляют основные средства передачи данных.


    1. ^ Цель создания информационных систем.
ИВС (информационные вычислительные сети) создаются с целью повышения оперативности управления предприятием. В качестве оконечных терминалов могут выступать как отдельные ПК, так и группы ПК, объединенные в локальные сети.

Передача информационных потоков осуществляется с помощью спутниковых, радиоприемных, кабельных, проводных линий связи. В настоящее время наиболее эффективным считается оптико-волоконная связь.

ИВС подразделяется на локальную (до 10 км) и глобальную (на всемирную).


      1. Средства связи для создания АСУ:

  1. спутниковая связь. Преимущества:

    1. большая пропускная способность

    2. покрытие больших расстояний

    3. большой коэффициент надежности
Недостатки:

  1. высокая стоимость

  2. необходимость содержания большой инфраструктуры наземных сооружений

  1. Оптико-волоконная. Преимущества:

    1. Способность предавать большие объемы информации с высокой степенью надежности.

  2. Радиосвязь, радиолинейная, телефонная.

      1. Приемы работы с информацией.
Существует два вида компьютерных сетей, которые в свою очередь подразделяются на более мелкие комплексы. Локальные сети LAN (ЛВС) позволяют собирать и объединять расположенные на небольшом расстоянии компьютеры посредством сетевых адаптеров в единое целое.

      1. ^ Этапы работы с информацией.

      1. ^ Требования, предъявляемые к вычислительным сетям.
Основными требованиями, предъявляемыми к вычислительным сетям, являются обеспечение пользователю доступа к ресурсам всех компьютеров, объединенных в сеть.

Прочие требования:


  • производительность

  • надежность

  • вместимость

  • защищенность
Производительность определяется за счет следующих факторов:

  • время реакции

  • пропускная способность

  • задержка передачи.
Время реакции является субъективной оценкой производительности системы с точки зрения пользователя. Оно определяется как интервал времени между возникновением запроса и получением ответа на запрос.

Пропускная способность отображается как объем данных, переданных за единицу времени, характеризует качество передачи сообщения.

Задержка передачи определяется как продолжительность интервала между моментом поступления информации в устройство и появлением этой информации на выходе из него.

Отказы устойчивости – это способность скрыть отказ о работе некоторых элементов системы.

Коэффициент готовности определяется как время, в течение которого система может быть использована.

Расширяемость характеризует возможность добавления отдельных элементов в существующую систему.

Масштабируемость означает возможность наращивания количества элементов и протяженности системы без потери производительности.

Управляемость характеризует возможность централизованно контролировать состояние его элементов системы, выявлять и разрешать проблемы, возникающие при ее работе, выполнять анализ производительности и планировать развитие.

Совместимость (интегрированность) характеризует способность системы включать в себя разнообразное программное и аппаратное обеспечение.

Система, состоящая из разнотипных элементов, называется неоднородной (гетерогенной). Если неоднородная система работает, то он является интегрированной.


        1. ^ Стандартизация (унификация) вычислительных систем.
В настоящее время ведутся работы по созданию унифицированных систем, способных выполнять широкий спектр задач в различных сферах человеческой жизнедеятельности. Работы по стандартизации вычислительных систем ведутся различными организациями. В зависимости от статуса организации различают следующие виды стандартов:

  1. стандарты отдельных фирм

  2. стандарты специальных фирм и объединений

  3. национальный стандарт

  4. международный стандарт
Главным достижением ISO является модель взаимодействия открытых систем, которая в настоящее время является концептуальной основой стандартизации в области вычислительных технологий.

Каждый уровень стандартизации состоит из следующих составляющих:


  1. физический

  2. канальный

  3. сетевой

  4. транспортный

  5. сеансовый

  6. представительный

  7. прикладной

2.2. Проектирование проблемно-ориентированной ИС
2.2.1. Цели создания информационной системы

При создании информационных систем неизбежно возникают пробле-мы, связанные с формальным - математическим и алгоритмическим описани-ем решаемых задач. От степени формализации во многом зависят эффектив-ность работы всей системы, а также уровень автоматизации, определяемый степенью участия человека при принятии решения на основе получаемой ин-формации.

Различают три типа задач, для которых создаются информационные сис-темы: структурированные (формализуемые), неструктурированные (неформа-лизуемые) и частично структурированные.
Целью использования информационной системы для решения структури-рованных задач является полная автоматизация их решения, т.е. сведение роли человека к нулю.
Решение неструктурированных задач из-за невозможности создания ма-тематического описания и разработки алгоритма связано с большими трудно-стями. Возможности использования здесь информационной системы невелики. Решение в таких случаях принимается человеком из эвристических соображе-ний на основе своего опыта и, возможно, косвенной информации из разных ис-точников.
Информационные системы, используемые для решения структурирован-ных задач, подразделяют на два вида:
 создающие управленческие отчеты и ориентированные главным обра-зом на обработку данных (поиск, сортировку, и т.п.). Используя сведе-ния, содержащиеся в этих отчетах, управляющий принимает решение;
 разрабатывающие возможные альтернативы решения. Принятие реше-ния при этом сводится к выбору одной из предложенных альтернатив.
Информационные системы, разрабатывающие альтернативы решений, могут быть модельными или экспертными.
Модельные информационные системы предоставляют пользователю ма-тематические, статистические, финансовые и другие модели, использование ко-торых облегчает выработку и оценку альтернатив решения.
Экспертные информационные системы обеспечивают выработку и оцен-ку возможных альтернатив пользователем за счет создания экспертных систем, связанных обработкой знаний. Эти системы генерируют альтернативы на базе имеющихся в информационном фонде данных, правил преобразования и про-цедур оценки синтезированных альтернатив.
Информационные системы различают также по функциональному при-знаку. В зависимости от направления деятельности выделяют: производствен-ные системы, системы маркетинга, финансовые и учетные и т.д. В крупных фирмах основная информационная система функционального назначения со-стоит из нескольких подсистем для выполнения подфункций. Например, произ-водственная информационная система имеет следующие подсистемы: управле-ние запасами, управление производственным процессом, компьютерного ин-жиниринга и т.д.
Тип информационной системы зависит от того, чьи интересы она обслу-живает и на каком уровне управления. В связи с этим различают:
Информационные системы оперативного (операционного) уровня. Она отвечать на запросы о текущем состоянии и отслеживать поток сделок в фирме, что соответствует оперативному управлению. Информационная система опера-тивного уровня является связующим звеном между фирмой и внешней средой.
Информационные системы специалистов помогают специалистам, рабо-тающим с данными, повышают продуктивность и производительность работы инженеров и проектировщиков. Задача подобных информационных систем - интеграция новых сведений в организацию и помощь в обработке бумажных документов.
Информационные системы для менеджеров среднего звена используются работниками среднего управленческого звена для мониторинга (постоянного слежения), контроля, принятия решения и администрирования.
Стратегические информационные системы обеспечивают поддержку принятия решений по реализации стратегических перспективных целей разви-тия организации. Подобные системы помогают высшему звену управленцев решать неструктурированные задачи, осуществлять долгосрочное планирова-ние. Основная задача - сравнение происходящих во внешнем окружении изме-нений с существующим потенциалом фирмы. Они призваны создать общую среду компьютерной и телекоммуникационной поддержки решений в неожи-данно возникающих ситуациях. Используя самые совершенные программы, эти системы способны в любой момент предоставить информацию из многих ис-точников.
Таким образом, можно сделать следующий вывод, что цель любой ин-формационной системы - это производство нужной для организации информа-ции, создание информационной и технической сред для осуществления управ-ления организацией.
Формирование информационной системы организации предполагает формулирование целей функционирования этой системы, которые предопреде-ляют ее свойства и характер пост¬роения. Среди всего многообразия целей мож-но выделить два основных класса: стратегические и тактические. Они отлича-ются между собой прежде всего уровнем обобщения и периодом, на который рассчи¬таны. Существует определенная зависимость между структурой управле¬ния и способом разбиения вышестоящих целей на подцели, т.е. процес¬сом де-композиции целей. И стратегические, и тактические цели могут но¬сить дирек-тивный характер. Они возникают в результате деятельности управленческих сотрудников более высокого уровня и называются траекторными. Такое на-звание объясняется тем, что заданные цели отража¬ют желаемую траекторию изменения управляемой системы во времени. В экономике траектория задается в виде совокупности показателей.
Целью создания информационной системы предприятия филиал ГУП РТ “ ПО Татспиртпром” Набережночелнинский ЛВЗ является:
 минимизация времени между совершением производственно-хозяйственных операций и их информационным отображением для принятия управленческих решений;
 создание эффективной структуры управления предприятием;
 повышение эффективности взаимодействия и улучшение качества работы всех структурных подразделений предприятия;
 совершенствование документооборота;
 экономия материальных, технических ресурсов и денежных средств, поиск источников возникновения необоснованных затрат;
 создание математического и статистического аппарата для лучшего анализа и прогнозирования деятельности предприятия;
 выход на новый уровень конкурентоспособности.

Термин информационная система (ИС) используется как в широком, так и в узком смысле.

В широком смысле информационная система есть совокупность технического, программного и организационного обеспечения, а также персонала, предназначенная для того, чтобы своевременно обеспечивать надлежащих людей надлежащей информацией.

В узком смысле информационной системой называют только подмножество компонентов ИС в широком смысле, включающее базы данных, СУБД и специализированные прикладные программы. ИС в узком смысле рассматривают как программно-аппаратную систему, предназначенную для автоматизации целенаправленной деятельности конечных пользователей, обеспечивающую, в соответствии с заложенной в нее логикой обработки, возможность получения, модификации и хранения информации.

2. Каковы основные элементы ИС?

Информационная система является средой, составляющими элементами которой являются компьютеры, компьютерные сети, программные продукты, базы данных, люди, различного рода технические и программные средства связи и т.д.

Современное понимание информационной системы предполагает использование в качестве основного технического средства переработки информации персонального компьютера. В крупных организациях наряду с персональным компьютером в состав технической базы информационной системы может входить мэйнфрейм или суперЭВМ. Кроме того, техническое воплощение информационной системы само по себе ничего не будет значить, если не учтена роль человека, для которого предназначена производимая информация и без которого невозможно ее получение и представление.

Под организацией будем понимать сообщество людей, объединенных общими целями и использующих общие материальные и финансовые средства для производства материальных и информационных продуктов и услуг. В тексте на равноправных началах будут употребляться два слова: “организация” и “ОЭ”.

Необходимо понимать разницу между компьютерами и информационными системами. Компьютеры, оснащенные специализированными программными средствами, являются технической базой и инструментом для информационных систем.

Информационная система немыслима без персонала, взаимодействующего с компьютерами и телекоммуникациями.

3. Какова главная цель ИС?

Основная цель информационной системы - организация хранения и передачи информации . Информационная система представляет собой человеко-компьютерную систему обработки информации.

Реализация функций информационной системы невозможна без знания ориентированной на нее информационной технологии. Информационная технология может существовать и вне информационной системы.

4. Какие основные этапы прошли в своём развитии ИС?

6. Как изменялись цели использования ИС на различных этапах их развития?

7. Как изменялись виды ИС на различных этапах их развития?

Период времени Концепции использования информации Вид информационных систем Цель использования
1950-1960 гг. Бумажный поток расчетных документов Информационные системы обработки Расчетных документов на электромеханических бухгалтерских машинах Повышение скорости обработки документов Упрощение процедуры обработки счетов и расчета зарплаты
1960-1970 гг. Основная помощь в подготовке отчетов Управленческие информационные системы для производственной информации Ускорение процесса подготовки отчетности
1970-1980 гг. Управленческий контроль реализации (продаж) Системы поддержки принятия решений Системы для высшего звена управления Выработка наиболее рационального решения
1980-2000 гг. Информация – стратегический ресурс, обеспечивающий конкурентное преимущество Стратегические информационные системы Автоматизированные офисы Выживание и процветание ОЭ

5. Как менялась концепция использования информации на различных этапах развития ИС?

Первые информационные системы появились в 50-х гг. В эти годы они были предназначены для обработки счетов и расчета зарплаты, а реализовывались на электромеханических бухгалтерских счетных машинах. Это приводило к некоторому сокращению затрат и времени на подготовку бумажных документов.

60-е гг. знаменуются изменением отношения к информационным системам. Информация, полученная из них, стала применяться для периодической отчетности по многим параметрам. Для этого организациям требовалось компьютерное оборудование широкого назначения, способное обслуживать множество функций, а не только обрабатывать счета и считать зарплату, как было ранее.

В 70-х – начале 80-х гг. информационные системы начинают широко использоваться в качестве средства управленческого контроля, поддерживающего и ускоряющего процесс принятия решений.

К концу 80-х гг. концепция использования информационных систем вновь изменяется. Они становятся стратегическим источником информации и используются на всех уровнях организации любого профиля. Информационные системы этого периода, предоставляя вовремя нужную информацию, помогают организации достичь успеха в своей деятельности, создавать новые товары и услуги, находить новые рынки сбыта, обеспечивать себе достойных партнеров, организовывать выпуск продукции по низкой цене и многое другое.

Введение

1. Понятие информационной системы и их классификация

2. Структура электронных информационных систем

Заключение

Список используемой литературы

Введение

Информационная система (ИС) – система сбора, хранения, накопления, поиска и передачи информации, применяемая в процессе управления или принятия решений. ИС включает:

Информ. – справочный фонд,

Язык обработки информ.,

Носители информ.,

Комплекс моделей.

Автоматизированная ИС – совокупность информ., экономико-математических методов и моделей, аппаратных, программных, организационных, технологических средств и специалистов.

Автоматизированная ИС предназначена для эффективной эксплуатации экономической ИС.

В организациях существует большое количество различных типов ИС: от традиционных до сложных, работающих на базе локальных и глобальных компьютерных сетей.


1. Понятие информационной системы и их классификация

Определение 1. Информационная система - это совокупность взаимосвязанных элементов, представляющих собой информационные, кадровые и материальные ресурсы, процессы, которые обеспечивают сбор, обработку, преобразование, хранение и передачу информации в организации.

Определение 2. Информационные технологии - это совокупность методов, процедур и средств, реализующих процессы сбора, обработки, преобразования, хранения и передачи информации.

Информация в современном мире превратилась в один из наиболее важных ресурсов, а информационные системы (ИС) стали необходимым инструментом практически во всех сферах деятельности.

Разнообразие задач, решаемых с помощью ИС, привело к появлению множества разнотипных систем, отличающихся принципами построения и заложенными в них правилами обработки информации.

Информационные системы можно классифицировать по целому ряду различных признаков. В основу рассматриваемой классификации положены наиболее существенные признаки, определяющие функциональные возможности и особенности построения современных систем. В зависимости от объема решаемых задач, используемых технических средств, организации функционирования, информационные системы делятся на ряд групп (классов) (рис. 1.).

По типу хранимых данных ИС делятся на фактографические и документальные. Фактографические системы предназначены для хранения и обработки структурированных данных в виде чисел и текстов. Над такими данными можно выполнять различные операции. В документальных системах информация представлена в виде документов, состоящих из наименований, описаний, рефератов и текстов. Поиск по неструктурированным данным осуществляется с использованием семантических признаков. Отобранные документы предоставляются пользователю, а обработка данных в таких системах практически не производится.

Основываясь на степени автоматизации информационных процессов в системе управления фирмой, информационные системы делятся на ручные, автоматические и автоматизированные.

Рис. 1.1. Класcификация информационных систем

Ручные ИС характеризуются отсутствием современных технических средств переработки информации и выполнением всех операций человеком.

В автоматических ИС все операции по переработке информации выполняются без участия человека.

Автоматизированные ИС предполагают участие в процессе обработки информации и человека, и технических средств, причем главная роль в выполнении рутинных операций обработки данных отводится компьютеру. Именно этот класс систем соответствует современному представлению понятия "информационная система".

В зависимости от характера обработки данных ИС делятся на информационно-поисковые и информационно-решающие.

Информационно-поисковые системы производят ввод, систематизацию, хранение, выдачу информации по запросу пользователя без сложных преобразований данных. (Например, ИС библиотечного обслуживания, резервирования и продажи билетов на транспорте, бронирования мест в гостиницах и пр.)

Информационно-решающие системы осуществляют, кроме того, операции переработки информации по определенному алгоритму. По характеру использования выходной информации такие системы принято делить на управляющие и советующие.

Результирующая информация управляющих ИС непосредственно трансформируется в принимаемые человеком решения. Для этих систем характерны задачи расчетного характера и обработка больших объемов данных. (Например, ИС планирования производства или заказов, бухгалтерского учета.)

Советующие ИС вырабатывают информацию, которая принимается человеком к сведению и учитывается при формировании управленческих решений, а не инициирует конкретные действия. Эти системы имитируют интеллектуальные процессы обработки знаний, а не данных. (Например, экспертные системы.)

В зависимости от сферы применения различают следующие классы ИС.

Информационные системы организационного управления - предназначены для автоматизации функций управленческого персонала как промышленных предприятий, так и непромышленных объектов (гостиниц, банков, магазинов и пр.).

Основными функциями подобных систем являются: оперативный контроль и регулирование, оперативный учет и анализ, перспективное и оперативное планирование, бухгалтерский учет, управление сбытом, снабжением и другие экономические и организационные задачи.

ИС управления технологическими процессами (ТП) - служат для автоматизации функций производственного персонала по контролю и управлению производственными операциями. В таких системах обычно предусматривается наличие развитых средств измерения параметров технологических процессов (температуры, давления, химического состава и т.п.), процедур контроля допустимости значений параметров и регулирования технологических процессов.

ИС автоматизированного проектирования (САПР) - предназначены для автоматизации функций инженеров-проектировщиков, конструкторов, архитекторов, дизайнеров при создании новой техники или технологии. Основными функциями подобных систем являются: инженерные расчеты, создание графической документации (чертежей, схем, планов), создание проектной документации, моделирование проектируемых объектов.

Интегрированные (корпоративные) ИС - используются для автоматизации всех функций фирмы и охватывают весь цикл работ от планирования деятельности до сбыта продукции. Они включают в себя ряд модулей (подсистем), работающих в едином информационном пространстве и выполняющих функции поддержки соответствующих направлений деятельности.

Анализ современного состояния рынка ИС показывает устойчивую тенденцию роста спроса на информационные системы организационного управления. Причем спрос продолжает расти именно на интегрированные системы управления. Автоматизация отдельной функции, например, бухгалтерского учета или сбыта готовой продукции, считается уже пройденным этапом для многих предприятий.

Заказчики ИС стали выдвигать все больше требований, направленных на обеспечение возможности комплексного использования корпоративных данных в управлении и планировании своей деятельности.

Таким образом, возникла насущная необходимость формирования новой методологии построения информационных систем.

Цель такой методологии заключается в регламентации процесса проектирования ИС и обеспечении управления этим процессом с тем, чтобы гарантировать выполнение требований как к самой ИС, так и к характеристикам процесса разработки. Основными задачами, решению которых должна способствовать методология проектирования корпоративных ИС, являются следующие:

Обеспечивать создание корпоративных ИС, отвечающих целям и задачам организации, а также предъявляемым требованиям по автоматизации деловых процессов заказчика;

Гарантировать создание системы с заданным качеством в заданные сроки и в рамках установленного бюджета проекта;

Поддерживать удобную дисциплину сопровождения, модификации и наращивания системы;

Обеспечивать преемственность разработки, т.е. использование в разрабатываемой ИС существующей информационной инфраструктуры организации (задела в области информационных технологий).

Внедрение методологии должно приводить к снижению сложности процесса создания ИС за счет полного и точного описания этого процесса, а также применения современных методов и технологий создания ИС на всем жизненном цикле ИС - от замысла до реализации.

Проектирование ИС охватывает три основные области:

Проектирование объектов данных, которые будут реализованы в базе данных;

Проектирование программ, экранных форм, отчетов, которые будут обеспечивать выполнение запросов к данным;

Учет конкретной среды или технологии, а именно: топологии сети, конфигурации аппаратных средств, используемой архитектуры (файл-сервер или клиент-сервер), параллельной обработки, распределенной обработки данных и т.п.

Проектирование информационных систем всегда начинается с определения цели проекта. В общем виде цель проекта можно определить как решение ряда взаимосвязанных задач, включающих в себя обеспечение на момент запуска системы и в течение всего времени ее эксплуатации:

Требуемой функциональности системы и уровня ее адаптивности к изменяющимся условиям функционирования;

Требуемой пропускной способности системы;

Требуемого времени реакции системы на запрос;

Безотказной работы системы;

Необходимого уровня безопасности;

Простоты эксплуатации и поддержки системы.

Согласно современной методологии, процесс создания ИС представляет собой процесс построения и последовательного преобразования ряда согласованных моделей на всех этапах жизненного цикла (ЖЦ) ИС. На каждом этапе ЖЦ создаются специфичные для него модели - организации, требований к ИС, проекта ИС, требований к приложениям и т.д. Модели формируются рабочими группами команды проекта, сохраняются и накапливаются в репозитории проекта. Создание моделей, их контроль, преобразование и предоставление в коллективное пользование осуществляется с использованием специальных программных инструментов - CASE-средств.

Понятие информационной системы

Понятие "информационная технология" тесно связано с понятием "информационная система".

Существует множество определений понятия "система". Например, система рассматривается как совокупность взаимосвязанных элементов (объектов), объединённых для реализации общей цели, обособленная от окружающей среды, взаимодействующая с ней как целое и проявляющая при этом системные свойства. В более широком смысле толкование системы даёт терминологический словарь по автоматике, информатике и вычислительной технике: система – это совокупность взаимосвязанных объектов, подчинённых определённой единой цели с учётом условий окружающей среды.

Упорядоченная совокупность элементов системы и их связей между собой представляет структуру системы .

Проанализировав понятие структуры и существующие определения системы , можно выделить следующие её основные составляющие :

1) система - это упорядоченная совокупность элементов;

2) элементы системы взаимосвязаны и взаимодействуют в рамках данной системы, являясь её подсистемами;

3) система как целое выполняет установленную ей функцию, которая не может быть сведена к функции отдельного элемента;

4) элементы системы могут взаимодействовать друг с другом в рамках системы, а также самостоятельно с внешней средой и изменять при этом своё содержание или внутреннее строение.

Информационная система (ИС) - это среда, составляющими элементами которой являются компьютеры, компьютерные сети, программные продукты, базы данных, люди и т.д.

Основная цель информационной системы – организация хранения, обработки и передачи итоговой информации, необходимой для принятия решения. Информационная система представляет собой человеко-компьютерную систему обработки информации.

Вспомним: Информационная технология – это процесс работы с информацией, состоящий из чётко регламентированных правил выполнения операций.

Основная цель информационной технологии – производство необходимой пользователю информации.

Исполнение функций информационной системы невозможно без знания ориентированной на неё информационной технологии.

Современная информационная система – это набор информационных технологий, направленных на поддержку жизненного цикла информации и включающих три основные составляющие процесса: обработку данных, управление, управление информацией и управление знаниями.

Понятие информационных систем на протяжении своего существования претерпело значительные изменения. Ниже представлена история развития ИС и цели их использования на разных периодах существования.



В 1950-е гг. была осознана роль информации как важнейшего ресурса предприятия, организации, региона, общества в целом; начали разрабатывать автоматизированные ИС разного рода. Первые ИС были предназначены исключительно для обработки счетов и расчёта зарплаты, а реализовывались на электромеханических бухгалтерских счётных машинах. Это приводило к некоторому сокращению затрат и времени на подготовку бумажных документов. Вначале, когда появилась возможность обработки информации с помощью вычислительной техники, был распространён термин "системы обработки данных" (СОД), этот термин широко использовался при разработке систем радиоуправления ракетами и другими космическими объектами, при создании систем сбора и обработки статистической информации о состоянии атмосферы, учётно-отчётной информации предприятий и т.п. По мере увеличения памяти ЭВМ основное внимание стали уделять проблемам организации баз данных (БД). Это направление сохраняет определённую самостоятельность и в настоящее время и занимается в основном разработкой и освоением средств технической и программной реализации обработки данных с помощью вычислительных машин разного рода. Для сохранения этого направления по мере его развития появились термины "базы знаний", "базы целей", позволяющие расширить толкование проблемы собственно создания и обработки БД до задач, которые ставятся в дальнейшем при разработке ИС.

1960-е гг. знаменуются изменением отношения к ИС. Информация, полученная из них, стала применяться для периодической отчётности по многим параметрам. Для этого организациям требовалось компьютерное оборудование широкого назначения, способное обслуживать множество функций, а не только обрабатывать счета и считать зарплату на предприятии, как было ранее.

:

Техническое обеспечение систем составляли маломощные ЭВМ 2–3 поколения;

Информационное обеспечение (ИО) представляло собой массивы (файлы) данных, структура которых определялась той программой, в которой они использовались;

Программное обеспечение – специализированные прикладные программы, например, программа начисления заработной платы;

Архитектура ИС – централизованная. Как правило, применялась пакетная обработка задач. Конечный пользователь не имел непосредственного контакта с ИС, вся предварительная обработка информации и ввод производились персоналом ИС.

:

Прямая взаимосвязь между программами и данными, т.е. изменения в предметной области приводили к изменению структуры данных, а это заставляло переделывать программы;

Трудоемкость разработки и модификации систем;

Сложность согласования частей системы, разработанных разными людьми в разное время.

В 1970-х – начале 1980-х гг. ИС предприятий начинают использоваться в качестве средства управления производством, поддерживающего и ускоряющего процесс подготовки и принятия решений. В своём большинстве ИС этого периода предназначались для решения установившихся задач, которые чётко определялись на этапе создания системы и затем практически не изменялись. Появление персональных ЭВМ приводит к появлению распределённых вычислительных ресурсов и децентрализации системы управления. Такой подход нашёл своё применение в системах поддержки принятия решений (СППР), которые характеризуют новый этап компьютерной ИТ организационного управления. При этом уменьшается нагрузка на централизованные вычислительные ресурсы и верхние уровни управления, что позволяет сосредоточить в них решение крупных долгосрочных стратегических задач. Жизнеспособность любой ИТ в немалой степени зависит от оперативного доступа пользователей к централизованным ресурсам и уровня информационных связей как по "горизонтали", так и по "вертикали" в пределах организационной структуры. В то же время для обеспечения эффективного управления крупными предприятиями была развита и остаётся актуальной идея создания интегрированных автоматизированных систем управления (АСУ).

К концу 1980-х гг. – началу 1990 гг. концепция использования ИС вновь изменяется. Они становятся стратегическим источником информации и используются на всех уровнях предприятия любого профиля. ИТ этого периода, предоставляя вовремя нужную информацию, помогают организации достичь успеха в своей деятельности, создавать новые товары и услуги, находить новые рынки сбыта, обеспечивать себе достойных партнёров, организовывать выпуск продукции высокого качества и по низкой цене и др. Стремление преодолеть недостатки предыдущего поколения ИС породило технологию создания баз данных и управления ими. База данных создаётся для группы взаимосвязанных задач, для многих пользователей, и это позволяет частично решить проблемы ранее созданных ИС. Вначале СУБД разрабатывались для больших ЭВМ и их количество не превышало десятка. Благодаря появлению ПЭВМ технология БД стала массовой, создано большое количество инструментальных средств и СУБД для разработки ИС, что в свою очередь вызвало появление большого количества прикладных ИС в прикладных областях.

Основные черты ИС этого поколения :

Основу ИО составляет база данных;

Программное обеспечение состоит из прикладных программ и СУБД;

Технические средства: ЭВМ 3–4 поколения и ПЭВМ;

Средства разработки ИС: процедурные языки программирования 3–4 поколения, расширенные языком работы с БД (SQL, QBE);

Архитектура ИС: наиболее популярны две разновидности: персональная локальная ИС, централизованная БД с сетевым доступом.

Большим шагом вперёд явилось развитие принципа "дружественного интерфейса" по отношению к пользователю (как к конечному, так и к разработчику ИС). Например, повсеместно применяется графический интерфейс, развитые системы помощи и подсказки пользователю, разнообразные инструменты для упрощения разработки ИС: системы быстрой разработки приложений (RAD-системы), средства автоматизированного проектирования ИС (CASE-средства).

Недостатки ИС этого поколения :

Большие капиталовложения в компьютеризацию предприятий не дали ожидаемого эффекта, соответствующего затратам (увеличились накладные расходы, но не произошло резкого повышения производительности);

Внедрение ИС столкнулось с инертностью людей, нежеланием конечных пользователей менять привычный стиль работы, осваивать новые технологии;

К квалификации пользователей стали предъявляться более высокие требования (знание ПК, конкретных прикладных программ и СУБД, способность постоянно повышать свою квалификацию).

С конца 1990 гг. в связи с указанными выше недостатками постепенно стало формироваться современное поколение ИС.

Основные черты этого поколения ИС :

Техническая платформа состоит из мощных ЭВМ 5-го поколения, используются разные платформы в одной ИС (большие ЭВМ, мощные стационарные ПК, мобильные ПК). Наиболее характерно широкое применение вычислительных сетей – от локальных до глобальных;

Информационное обеспечение направлено на повышение интеллектуальности банков данных в следующих направлениях:

· новые модели знаний, учитывающие не только структуру информации, но и активный характер знаний;

· средства оперативного анализа информации (OLAP) и средства поддержки принятия решений (DSS);

· новые формы представления информации, более естественные для человека (мультимедиа, полнодокументальные БД, гипердокументальные БД, средства восприятия и синтеза речи).

3.3. Информационные системы: задачи, свойства, процессы, пользователи

Современные информационные системы решают следующие основные задачи :

1. Осуществление поиска, обработки и хранения информации, которая накапливается в течение большого периода времени, имеет большую ценность. ИС предназначены для более быстрой и надёжной обработки информации, чтобы люди не тратили время, чтобы избежать свойственных человеку случайных ошибок, чтобы сэкономить расходы, чтобы сделать жизнь людей более комфортной.

2. Хранение данных разной структуры. Не существует развитой ИС, работающей с одним однородным файлом данных. Более того, разумным требованием к информационной системе является то, чтобы она могла развиваться. Могут появиться новые функции, для выполнения которых требуются дополнительные данные с новой структурой. При этом вся накопленная ранее информация должна остаться сохранной. Теоретически можно решить эту задачу путём использования нескольких файлов внешней памяти, каждый из которых хранит данные с фиксированной структурой. В зависимости от способа организации используемой системы управления файлами эта структура может быть структурой записи файла или поддерживаться отдельной библиотечной функцией, написанной специально для данной ИС. Известны примеры реально функционирующих ИС, в которых хранилище данных планировалось основывать на файлах. В результате развития большинства таких систем в них выделился отдельный компонент, который представляет собой разновидность системы управления базами данных (СУБД).

3. Анализ и прогнозирование потоков информации различных видов и типов, перемещающихся в обществе. Изучаются потоки с целью их минимизации, стандартизации и приспособления для эффективной обработки на вычислительных машинах, а также особенности потоков информации, протекающей через различные каналы распространения информации.

4. Исследование способов представления и хранения информации, создание специальных языков для формального описания информации различной природы, разработка специальных приёмов сжатия и кодирования информации, аннотирования объёмных документов и реферирования их. В рамках этого направления развиваются работы по созданию банков данных большого объёма, хранящих информацию из различных областей знаний в форме, доступной для вычислительных машин.

5. Построение процедур и технических средств для их реализации, с помощью которых можно автоматизировать процесс извлечения информации из документов, не предназначенных для вычислительных машин, а ориентированных на восприятие их человеком.

6. Создание информационно-поисковых систем, способных воспринимать запросы к информационным хранилищам, сформулированные на естественном языке, а также специальных языках запросов для систем такого типа.

7. Создание сетей хранения, обработки и передачи информации, в состав которых входят информационные банки данных, терминалы, обрабатывающие центры и средства связи.

Конкретные задачи, которые должны решаться информационной системой, зависят от той прикладной области, для которой предназначена система. Области применения информационных приложений разнообразны: банковское дело, управление производством, медицина, транспорт, образование, юриспруденция и т.д.

Информационная система определяется следующими свойствами :

1. Структура ИС, её функциональное назначение должны соответствовать поставленным целям.

2. ИС предназначена для производства достоверной, надёжной, своевременной и систематизированной информации, основанной на использовании БД, экспертных систем и баз знаний. Так как любая ИС предназначена для сбора, хранения и обработки информации, то в основе любой ИС лежит среда хранения и доступа к данным. Среда должна обеспечивать уровень надёжности хранения и эффективность доступа, которые соответствуют области применения ИС.

3. ИС должна контролироваться людьми, ими пониматься и использоваться в соответствии с основными принципами, реализованными в виде стандарта организации на ИС. Интерфейс пользователя ИС должен быть легко понимаем на интуитивном уровне.

4. Любая информационная система может быть подвергнута анализу, построена и управляема на основе общих принципов построения систем.

5. Любая ИС является динамичной и развивающейся.

6. При построении ИС используются сети передачи данных.

Процессы , обеспечивающие работу информационной системы любого назначения, условно можно представить в виде блоков:

- ввод информации из внешних или внутренних источников;

- обработка входной информации и представление её в удобном виде;

- вывод информации для представления потребителям или передачи в другую систему;

- обратная связь – это информация, переработанная людьми данной организации для коррекции входной информации.

Пользователей ИС можно разделить на несколько групп:

Случайный пользователь, взаимодействие которого с ИС не обусловлено служебными обязанностями;

Конечный пользователь (потребитель информации) – лицо или коллектив, в интересах которого работает ИС. Он работает с ИС повседневно, связан с жёстко ограниченной областью деятельности и, как правило, не является программистом, например, это может быть бухгалтер, экономист, руководитель подразделения;

Коллектив специалистов (персонал ИС), включающий администратора банка данных, системного аналитика, системных и прикладных программистов.

Состав и функции персонала ИС:

Администратор – это специалист (или группа специалистов), который понимает потребности конечных пользователей, работает с ними в тесном контакте и отвечает за определение, загрузку, защиту и эффективность работы банка данных. Он должен координировать процесс сбора информации, проектирования и эксплуатации БД, учитывать текущие и перспективные потребности пользователей.

Системные программисты – это специалисты, которые занимаются разработкой и сопровождением базового математического обеспечения ЭВМ (ОС, СУБД, трансляторов, сервисных программ общего назначения).

Прикладные программисты – это специалисты, которые разрабатывают программы для реализации запросов к БД.

Аналитики – это специалисты, которые строят математическую модель предметной области исходя из информационных потребностей конечных пользователей; ставят задачи для прикладных программистов.

На практике персонал небольших ИС часто состоит из одного–двух специалистов, которые выполняют все перечисленные функции.

Для разных классов пользователей можно выделить несколько уровней представлений об информации в ИС, которые обусловлены потребностями различных групп пользователей и уровнем развития инструментальных средств создания ИС.

Уровни представления информации в информационных системах:

Внешнее представление данных – это описание информационных потребностей конечного пользователя и прикладного программиста. Связь между этими двумя видами внешнего представления осуществляет аналитик.

Концептуальное представление данных – отображение знаний обо всей предметной области ИС. Это наиболее полное представление, отражающее смысл информации, оно может быть только одно и не должно содержать противоречий и двусмысленностей. Концептуальное представление – это сумма всех внешних представлений, с учётом перспектив развития ИС, знаний о методах обработки информации, знаний о структуре самой ИС и др.

Внутреннее (физическое) представление – это организация данных на физическом носителе информации. Этот уровень характеризует представления системных программистов и практически используется только тогда, когда СУБД не обеспечивает требуемого быстродействия или специфического режима обработки данных.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!