Схема системы охлаждения двс. Зачем нужно охлаждение двигателя и как это работает. Принцип работы воздушной системы охлаждения

1 - Пробка расширительного бачка. 2 - Расширительный бачок. 3 - Подводящий шланг радиатора. 4 - Шланг от радиатора к расширительному бачку. 5 - Отводящий шланг радиатора. 6 - Левый бачок радиатора. 7 - Алюминиевые трубки радиатора. 8 - Датчик включения электровентилятора. 9 - Правый бачок радиатора. 10 - Сливная пробка. 11 - Сердцевина радиатора. 12 - Кожух электровентилятора. 13 - Крыльчатка электровентилятора. 14 - Электродвигатель. 15 - Зубчатый шкив насоса. 16 - Крыльчатка насоса. 17 - Зубчатый ремень привода распределительного вала. 18 - Отводящий патрубок радиатора отопителя. 19 - Подводящая трубка насоса. 20 - Шланг подвода жидкости к пусковому устройству карбюратора. 21 - Блок подогрева карбюратора. 22 - Выпускной патрубок. 23 - Подводящий патрубок отопителя. 24 - Шланг отвода жидкости от блока подогрева карбюратора. 25 - Термостат. 26 - Шланг от расширительного бачка к термостату.

Зачем нужна система охлаждения двигателя уже можно догадаться из названия – работая, двигатель нагревается и охлаждается через радиатор. Это вкратце. На самом деле, задача системы охлаждения двигателя поддерживать его температуру в определенном диапазоне (85-100 градусов), называемом рабочей температурой. При рабочей температуре мотор работает максимально эффективно и безопасно.

Большой и малый круг системы охлаждения двигателя

После запуска, двигатель должен как можно быстрее достичь рабочей температуры. Для этого поделена на две части – малый круг и большой круг обращения. По малому кругу охлаждающая жидкость циркулирует максимально близко к цилиндрам и, соответственно максимально быстро нагревается. Как только она прогревается до наивысшей рабочей температуры, открывается клапан и жидкость уходит на большой круг, где не дает двигателю перегреться. Задача малого круга сохранить рабочую температуру, а большого - отвести лишнее тепло.

Печка как часть системы охлаждения двигателя

Приятно, когда салон быстро прогревается, а ведь это происходит потому, что это часть малого круга обращения. Через шланги жидкость уходит на радиатор печки и возвращается обратно. Что это значит? Чтобы печка начала дуть теплый воздух быстрее, ее надо включать тогда, когда согреется двигатель.

Помпа и термостат системы охлаждения

Итак, мы выяснили, что двигатель не перегревается благодаря циркуляции ОЖ. Но что заставляет жидкость двигаться? Ответ – . Это такой специальный насос, который приводится в движение двигателем через ремень, но бывают помпы и с электромотором. Основные неисправности помпы связанные с течью сквозь дренажное отверстие и износом подшипника (сопровождается писком). Также бывают помпы с пластиковой крыльчаткой, которая разъедается от некачественного антифриза.

Этот самый клапан, который открывается при нагреве ОЖ и пускает ее по большому кругу. Состоит из цилиндра с веществом, которые расширяется при нагреве; достигнув определенной температуры, оно выдавливает шток и открывает клапан. Остыв, шток втягивается, а клапан закрывается.

Радиатор и расширительный бачок системы охлаждения двигателя

Является частью большого круга и устанавливается впереди автомобиля. В нем циркулирует жидкость, которая охлаждается встречным воздухом и вентилятором.

Вентилятор работает на всасывание, чтобы не препятствовать встречному потоку воздуха.

Крышка радиатора поддерживает давление в системе охлаждения. В ней есть клапан, который открывается, когда давление превышает рабочее, и стравливает лишнюю жидкость по шлангу в расширительный бачок.

Во время движения многие механизмы мотора находятся в постоянном движении. Их трение настолько сильно, что температура начинает очень быстро повышаться. Но самый главный «виновник» высокой температуры горючая смесь, в результате сгорания которой температура повышается до 2000-2500 °С. При этом двигатель может быстро выйти из строя, т.к. для его нормальной работы самая оптимальная температура 80-90 °С . Для того чтобы сохранить работоспособность двигателя его нужно охлаждать. Для этого в моторе и существует система охлаждения.

Самым простым способом охлаждения двигателя, является встречный поток воздуха. Для автомобилей такая система практически не используется, но зато она широко применяется для охлаждения двигателей мотоциклов. Иногда встречный воздух охлаждает и двигатель машин. Среди известных нам марок эта система использовалась на .

Принцип действия воздушной системы охлаждения основан на том, что воздух подается на двигатель с помощью вентилятора. А охлаждением автоматически управляет термостат, с помощью которого можно поддерживать нужный температурный режим, не допуская ни охлаждения, ни перегрева. Для большинства автомобильных двигателей используется жидкостная система охлаждения. Принцип действия этой системы намного проще, чем охлаждение воздухом. Основан он на том, что тепло, исходящее от цилиндров, поглощается охлаждающей средой. В качестве регулятора температуры, т.е. охлаждающей среды, используется специальная жидкость. Нагреваясь от стенок цилиндра, она поступает в радиатор, охлаждается там и снова проходит к стенкам цилиндра, поглощая тепло. Таким образом, охлаждающая жидкость постоянно циркулирует, в действие эту систему приводит насос. Для охлаждения используется антифриз - смесь этиленгликоля и спирта. В качестве охлаждающей среды можно использовать и обычную воду, но в холода ее применение недопустимо, поскольку, замерзнув, она выведет из строя двигатель. Антифриз же не замерзает до минус 40 °С .

А теперь речь пойдет о том, как устроена система охлаждения. В это устройство входит рубашка охлаждения цилиндров, радиатор, насос, термостат, вентилятор и вентиляторный ремень, жалюзи, соединительные патрубки и шланги с хомутиками, а также указатель температуры воды. Все перечисленные детали очень важны и при поломке одного из них, может выйти из строя вся система охлаждения.

Если двигатель - это сердце машины, то водяной насос можно назвать сердцем системы охлаждения. Основная его функция - обеспечить циркуляцию жидкости. Вентилятор создает поток воздуха, который охлаждает жидкость. Чем больше скорость машины, тем сильнее работает вентилятор.

Что такое рубашка охлаждения вы уже знаете: образуют ее двойные стенки цилиндров, а в пространство между ними поступает охлаждающая жидкость. Радиатор состоит из верхнего и нижнего бачка, между которыми расположены трубки. В верхнем бачке находится горячая жидкость, которую и нужно охладить. Сразу большое количество воды остывает очень медленно. Но когда машина в пути ждать вам некогда, поэтому конструкторы изобрели такое устройство, чтобы вода в нем охлаждалась небольшими порциями.


Например, если чай в чашке очень горячий, то можно набрать его в чайную ложку и подуть. Работа радиатора основана на этом же принципе. Из верхнего бачка горячая жидкость тонкими струйками, которые хорошо обдуваются, поступает в нижний бачок. Там жидкость собирается уже охлажденная.

Горловина радиатора прочно закрыта пробкой. Но жидкость бывает такой горячей, что может даже закипеть. Для этих случаев предусмотрены клапаны, которые имеются на пробке. При возникновении избыточного давления через один клапан (выпускной) стравливается пар. Через другой клапан (впускной) в радиатор попадает воздух, когда давление в механизме ниже атмосферного. Если двигатель еще не остыл после долгой работы, то открывать пробку радиатора очень опасно, т.к. можно получить ожог горячим паром или водой.

Термостат регулирует работу системы охлаждения. Когда жидкость нагреется, то спирт, находящийся в гофрированном баллоне термостата, начнет испаряться, давление внутри баллона со спиртом повысится, и баллон, растягиваясь в высоту, откроет клапан термостата. Происходит это при температуре не ниже 80 °С. Как только температура поднимется до 90 °С, клапан откроется полностью и вода сможет циркулировать в системе свободно. Закроется клапан только тогда, когда температура понизится, это происходит, когда автомобилист снижает скорость машины или останавливается.

На дороге, даже если она очень хорошая и гладкая, машину все равно будет немного потряхивать. Поэтому положение двигателя по отношению к радиатору постоянно меняется, и на твердую опору ставить его нельзя. Допускается только резиновая опора. По той же причине не делают и жесткое соединение между двигателем и радиатором. А вот прорезиненные шланги и патрубки в самый раз. Они легкие и гибкие, поэтому овраги и кочки им не страшны.

Жалюзи необходимы для регулирования количества воздуха, который проходит через радиатор. Состоят они из ряда вертикально установленных пластинок, которые можно поворачивать с помощью рукоятки, находящейся в салоне автомобиля. Когда рукоятка находится в исходном положении, створки жалюзи открыты и воздух, не задерживаясь, свободно проходит к радиатору. Если выдвинуть рукоятку на себя, то створки жалюзи сомкнутся, и доступ воздуха к радиатору прекратится. Выдвинув рукоятку лишь наполовину, воздух хоть и не сильно, но будет поступать к радиатору. Жалюзи используются водителями нечасто и преимущественно в холодное время года, чтобы защитить радиатор от переохлаждения. При пуске двигателя в зимнее время жалюзи нужно закрыть, чтобы он быстрее прогрелся и не позволил замерзнуть воде в радиаторе.

Безусловно, работу системы охлаждения необходимо контролировать. Для этого на приборной панели имеется электрический указатель температуры воды. Он связан проводом с датчиком, помещенным в рубашку охлаждения. В дороге водителю нужно следить за показаниями этого прибора. Перегреваться двигатель не должен, т.к. это приводит к быстрому износу механизма. Чаще всего перегрев происходит из-за недостаточного количества охлаждающей жидкости или в результате нарушения в работе охлаждающей системы. Переохлаждение чаще всего возникает в зимнее время из-за неисправных жалюзи или отсутствия утеплительного чехла.

Перегрев и охлаждение значительно снижают мощность двигателя, поэтому необходимо регулярно проверять уровень охлаждающей жидкости в радиаторе, смотреть, не подтекает ли она.

Система охлаждения нуждается в регулярном осмотре , во время которого необходимо смазывать подшипники вентилятора и подтягивать его ремень и хомутики шлангов, если в этом есть необходимость. В том случае, если для охлаждения вы используете воду, то в холодную погоду, особенно при температуре ниже О °С, необходимо следить, чтобы вода в радиаторе не замерзла, иначе сам радиатор и цилиндр будут испорчены. Для защиты двигателя от мороза на облицовку радиатора надевают утеплительный чехол. 

Если вы хотите наглядно ознакомиться с системой охлаждения двигателя, то обязательно посмотрите это видео.


Еще статьи про ""

Заметили опечатку на сайте? Выделите ее и нажмите Ctrl + Enter

Система охлаждения - это совокупность устройств, обеспечивающих принудительный отвод теплоты от нагревающихся деталей двигателя.

Потребность в системах охлаждения для современных двигателей вызвана тем, что естественное рассеивание теплоты наружными поверхностями двигателя и теплоотвод в циркулирующее моторное масло не обеспечивают оптимального температурного режима работы двигателя и некоторых его систем. Перегрев двигателя связан с ухудшением процесса наполнения цилиндров свежим зарядом, пригоранием масла, увеличением потерь на трение и даже заклиниванием поршня. На бензиновых двигателях возникает также опасность калильного зажигания (не от искры свечи, а вследствие высокой температуры камеры сгорания).

Система охлаждения должна обеспечивать автоматическое поддержание оптимального теплового режима двигателя на всех скоростных и нагрузочных режимах его работы при температуре окружающего воздуха -45…+45 °С, быстрый прогрев двигателя до рабочей температуры, минимальный расход мощности на приведение в действие агрегатов системы, малую массу и небольшие габаритные размеры, эксплуатационную надежность, определяемую сроком службы, простотой и удобством обслуживания и ремонта.

На современных колесных и гусеничных машинах применяются воздушная и жидкостная системы охлаждения.

При использовании воздушной системы охлаждения (рис. а) теплота от головки и блока цилиндров передается непосредственно обдувающему их воздуху. Через воздушную рубашку, образов ванную кожухом 3, охлаждающий воздух прогоняется с помощью вентилятора 2, приводимого в действие от коленчатого вала с использованием ременной передачи. Для улучшения теплоотвода цилиндры 5 и их головки снабжены ребрами 4. Интенсивность охлаждения регулируется специальными воздушными заслонками 6, управляемыми автоматически с помощью воздушных термостатов.

Большинство современных двигателей имеет жидкостную систему охлаждения (рис. б). В систему входят рубашки охлаждения 11 и 13 соответственно головки и блока цилиндров, радиатор 18, верхний 8 и нижний 16 соединительные патрубки со шлангами 7 и 15, жидкостный насос 14, распределительная труба 72, термостат 9, расширительный (компенсационный) бачок 10 и вентилятор 77. В рубашке охлаждения, радиаторе и патрубках находится охлаждающая жидкость (вода или антифриз - незамерзающая жидкость).

Рис. Схемы воздушной (а) и жидкостной (б) систем охлаждения двигателя:
1 - ременная передача; 2, 17 - вентиляторы; 3 - кожух; 4 - ребра цилиндра; 5 - цилиндр; 6 - воздушная заслонка; 7, 15 - шланги; 8, 16 - верхний и нижний соединительные патрубки; 9 - термостат; 10 - расширительный бачок; 77, - рубашки охлаждения головки и блока цилиндров; 12 - распределительная труба; 14 - жидкостный насос; 18 - радиатор

При работе двигателя приводимый в действие от коленчатого вала жидкостный насос создает в системе циркуляцию охлаждающей жидкости. По распределительной трубе 12 жидкость направляется сначала к наиболее нагретым деталям (цилиндры, головка блока), охлаждает их и по патрубку 8 поступает в радиатор 18. В радиаторе поток жидкости разветвляется по трубкам на тонкие струйки и охлаждается воздухом, продуваемым через радиатор. Охлажденная жидкость из нижнего бачка радиатора по патрубку 16 и шлангу 15 снова поступает в жидкостный насос. Поток воздуха через радиатор обычно создает вентилятор 77, приводимый в действие от коленчатого вала или специального электродвигателя. На некоторых гусеничных машинах для,обеспечения потока воздуха применяется эжекционное устройство. Принцип действия этого устройства заключается в использовании энергии отработавших газов, вытекающих с большой скоростью из выпускной трубы и увлекающих за собой воздух.

Регулирует циркуляцию жидкости в радиаторе, поддерживая оптимальную температуру двигателя, термостат 9. Чем выше температура жидкости в рубашке, тем значительнее открыт клапан термостата и больше жидкости поступает в радиатор. При низкой температуре двигателя (например, непосредственно после его пуска) клапан термостата закрыт, и жидкость направляется не в радиатор (по большому кругу циркуляции), а сразу в приемную полость насоса (по малому кругу). Этим достигается быстрый прогрев двигателя после пуска. Интенсивность охлаждения регулируется также с помощью жалюзи, установленных на входе воздушного тракта или выходе из него. Чем больше степень закрытия жалюзи, тем меньше воздуха проходит через радиатор и хуже охлаждение жидкости.

В расширительном бачке 10, расположенном выше радиатора, имеется запас жидкости для компенсации ее убыли в контуре из-за испарения и утечек. В верхнюю полость расширительного бачка часто отводят образовавшийся в системе пар из верхнего коллектора радиатора и рубашки охлаждения.

Жидкостное охлаждение по сравнению с воздушным имеет следующие преимущества: более легкий пуск двигателя в условиях низкой температуры окружающего воздуха, более равномерное охлаждение двигателя, возможность применения блочных конструкций цилиндров, упрощение компоновки и возможность

изоляции воздушного тракта, меньший шум от двигателя и более низкие механические напряжения в его деталях. Вместе с тем жидкостная система охлаждения, имеет ряд недостатков, таких, как более сложная конструкция двигателя и системы, потребность в охлаждающей жидкости и более частой смене масла, опасность подтекания и замерзания жидкости, повышенный коррозионный износ, значительный расход топлива, более сложное обслуживание и ремонт, а также (в ряде случаев) повышенная чувствительность к изменению температуры окружающего воздуха.

Жидкостный насос 14 (см. рис. б) обеспечивает циркуляцию охлаждающей жидкости в системе. Обычно применяются центробежные крыльчатые насосы, но иногда используются шестеренные и поршневые насосы. Термостат 9 может быть одно- и двухклапанным с жидкостным термосиловым элементом или элементом, содержащим твердый наполнитель (церезин). В любом случае материал для термосилового элемента должен иметь очень большой коэффициент объемного расширения, чтобы при нагреве стержень клапана термостата мог перемещаться на довольно большое расстояние.

Практически, все двигатели наземных ТС с жидкостным охлаждением снабжены так называемыми закрытыми системами охлаждения, которые не имеют постоянной связи с атмосферой. При этом в системе образуется избыточное давление, что приводит к повышению температуры кипения жидкости (до 105… 110°С), увеличению эффективности охлаждения и уменьшению потерь, а также снижению вероятности появления в потоке жидкости пузырьков воздуха и пара.

Поддержание необходимого избыточного давления в системе и обеспечение доступа в нее атмосферного воздуха при разрежении осуществляется с помощью двойного паровоздушного клапана, который устанавливается в самой высокой точке жидкостной системы (обычно в крышке наливной горловины расширительного бачка или радиатора). Паровой клапан открывается, позволяя избытку пара уйти в атмосферу, если давление в системе превышает атмосферное на 20… 60 кПа. Воздушный клапан открывается, когда давление в системе снижается на 1… 4 кПа по сравнению с атмосферным (после остановки двигателя охлаждающая жидкость остывает, и ее объем уменьшается). Перепады давления, при которых открываются клапаны, обеспечиваются подбором параметров клапанных пружин.

В жидкостной вентиляционной системе охлаждения радиатор омывается потоком воздуха, создаваемым вентилятором. В зависимости от взаимного расположения радиатора и вентилятора могут применяться следующие типы вентиляторов: осевые, центробежные и комбинированные, создающие как осевой, так и радиальный потоки воздуха. Осевые вентиляторы устанавливают перед радиатором или за ним в специальном воздухоподводящем канале. К центробежному вентилятору воздух подводится по оси его вращения, а отводится - по радиусу (или наоборот). При нахождении радиатора перед вентилятором (в области всасывания) поток воздуха в радиаторе более равномерный, а температура воздуха не повышена из-за его перемешивания вентилятором. При нахождении радиатора за вентилятором (в области нагнетания) поток воздуха в радиаторе турбулентный, что повышает интенсивность охлаждения.

На тяжелых колесных и гусеничных ТС приведение вентилятора в действие обычно осуществляется от коленчатого вала двигателя. Могут использоваться карданные, ременные и зубчатые (цилиндрические и конические) передачи. В целях снижения динамических нагрузок на вентилятор в его приводе от коленчатого вала часто применяются разгружающие и демпфирующие устройства в виде торсионных валиков, резиновых, фрикционных и вязкостных муфт, а также гидромуфт. Для привода вентилятора относительно маломощных двигателей широко используются специальные электродвигатели, питание которых осуществляется от бортовой электросистемы. Это, как правило, уменьшает массу силовой установки и упрощает ее компоновку. Кроме того, применение электродвигателя для привода вентилятора позволяет регулировать частоту его вращения, а следовательно, и интенсивность охлаждения. При низкой температуре охлаждающей жидкости возможно автоматическое отключение вентилятора.

Радиаторы связывают друг с другом воздушный и жидкостный тракты системы охлаждения. Назначение радиаторов - передача теплоты от охлаждающей жидкости атмосферному воздуху. Основные части радиатора - входной и выходной коллекторы, а также сердцевина (охлаждающая решетка). Сердцевина изготавливается из меди, латуни или алюминиевых сплавов. По типу сердцевины различают следующие виды радиаторов: трубчатые, трубчато-пластинчатые, трубчато-ленточные, пластинчатые и сотовые.

В системах охлаждения колесных и гусеничных машин наибольшее распространение получили трубчато-пластинчатые и трубчато-ленточные радиаторы. Они жестки, прочны, технологичны в производстве и обладают высокой тепловой эффективностью. Трубки таких радиаторов имеют, как правило, плоскоовальное сечение. Трубчато-пластинчатые радиаторы могут также состоять из трубок круглого или овального сечения. Иногда трубки плоскоовального сечения располагают под углом 10… 15° к воздушному потоку, что способствует турбулизации (завихрению) воздуха и повышает теплоотдачу радиатора. Пластины (ленты) могут быть гладкими или гофрированными, с пирамидальными выступами или отогнутыми просечками. Гофрирование пластин, нанесение просечек и выступов увеличивают охлаждающую поверхность и обеспечивают турбулентное течение потока воздуха между трубками.

Рис. Решетки трубчато-пластинчатого (а) и трубчато-ленточного (б) радиаторов

Первый серийный автомобиль был выпущен компанией «Форд» в начале XX века. Он носил гордую приставку «T» и представлял собой ещё одну веху в развитии человечества. До этого автомобили были уделом горстки энтузиастов, которые устраивали перегоны, и время от времени ездили на послеобеденные променады.

Генри Форд устроил настоящую революцию. Он поставил автомобили на конвейер, и вскоре его машины заполнили собой все дороги Америки. Мало того, заводы были открыты и в Советском Союзе.

Главная парадигма Генри Форда была крайне проста: «Автомобиль может иметь любой цвет, если он чёрный». Подобный подход дал возможность каждому человеку иметь собственную машину. Оптимизация затрат и увеличение масштабов производства позволили сделать цену по-настоящему доступной.

С тех пор прошло много времени. Автомобили беспрестанно эволюционировали. Больше всего изменений и дополнений пришлось на двигатель. Особую роль в этом процессе сыграла система охлаждения. Она совершенствовалась год за годом, позволяя продлить ресурс мотора и избежать перегрева.

История системы охлаждения двигателя

Стоит признать, что система охлаждения двигателя всегда была в автомобилях, правда, её конструкция с годами кардинально менялась. Если смотреть исключительно в сегодняшний день, то в большинстве автомобилей установлен жидкостный тип. К его основным преимуществам можно причислить компактность и высокую производительность. Но так было далеко не всегда.

Первые системы охлаждения двигателей были крайне ненадёжными. Пожалуй, если вы напряжёте память, то вспомните фильмы, в которых события происходят в конце XIX и в начала XX века. В то время машина на обочине с дымящимся двигателем была обычным явлением.

Внимание! Изначально основной причиной перегрева двигателя н было использование в качестве охлаждающей жидкости воды.

Вы как автомобилист должны знать, что в современных автомобилях в качестве ресурса для системы охлаждения используется антифриз. Его аналог даже был в Советском Союзе, только назывался он тосолом.

В принципе, это одно и то же вещество. В его основе лежит спирт, но из-за дополнительных присадок эффективность антифриза кардинально выше. К примеру, тосол в системе охлаждения двигателя покрывает защитной плёнкой абсолютно всё, что крайне негативно сказывается на теплоотдаче. Из-за этого ресурс мотора сокращается.

Антифриз действует совершенно по-другому. Он покрывает защитной плёнкой только проблемные места. Также среди отличий можно вспомнить дополнительные присадки, которые есть в антифризе, разную температуру закипания и так далее. В любом случае наиболее показательным будет сравнение с водой.

Вода закипает при температуре в 100 градусов. Температура кипения антифриза составляет порядка 110—115 градусов. Естественно, благодаря этому случаи закипания двигателя практически исчезли.

Стоит признать, что конструкторами было проведено множество опытов, направленных на то, чтобы модернизировать систему охлаждения двигателя. Достаточно вспомнить исключительно воздушное охлаждение. Такие системы довольно активно применялись в 50—70 годах прошлого века. Но из-за низкой эффективности и громоздкости довольно быстро вышли из употребления.

В качестве успешных примеров автомобилей с воздушными системами охлаждения двигателей можно вспомнить:

  • Fiat 500,
  • Citroën 2CV,
  • Фольксваген Жук.

В Советском Союзе также были автомобили, работающие при помощи воздушной системы охлаждения двигателя. Пожалуй, каждый автомобилист, родившийся в СССР, помнит легендарных «запорожцев», у которых двигатель был установлен сзади.

Как работает жидкостная система охлаждения двигателя

Схема жидкостной системы охлаждения не представляет собой что-либо сверхсложное. Мало того, все конструкции, вне зависимости от того, какие компании занимались их производством, похожи между собой.

Устройство

Перед тем как перейти к рассмотрению принципа работы системы охлаждения двигателя, необходимо изучить основные элементы конструкции. Это позволит вам точно представить, как всё происходит внутри устройства. Вот главные детали узла:

  • Рубашка охлаждения. Это небольшие полости, заполненные антифризом. Они находятся в тех местах, где в наибольшей степени необходимо охлаждение.
  • Радиатор рассеивает тепло в атмосферу. Обычно его ячейки делаются из комбинации сплавов, чтобы добиться наибольшей эффективности. Конструкция не только должна эффективно снижать температуру жидкости, но и быть прочной. Ведь даже маленький камешек может стать причиной пробоины. Сама система состоит из комбинации трубочек и рёбер.
  • Вентилятор крепится сзади радиатора так, чтобы не мешать встречному потоку воздуха. Он работает при помощи электромагнитной или же гидравлической муфты.
  • Термодатчик фиксирует текущее состояние антифриза в системе охлаждения двигателя и при необходимости пускает его по большому кругу. Это устройство устанавливается между патрубком и рубашкой охлаждения. По факту данный элемент конструкции представляет собой клапан, который может быть как биметаллическим, так и электронным.
  • Помпа — это центробежный насос. Его главная задача обеспечить беспрерывную циркуляцию вещества в системе. Устройство работает при помощи ремня или шестерни. Некоторые модели моторов могут иметь сразу два насоса.
  • Радиатор отопительной системы. По своим размерам немного уступает аналогичному устройству для всей системы охлаждения. К тому же он находится внутри салона. Его главная задача передавать тепло в машину.

Конечно же, это не все элементы системы охлаждения двигателя есть ещё патрубки, трубки и множество мелких деталей. Но для общего понимания работы всей системы такого перечня вполне достаточно.

Принцип работы

В системе охлаждения двигателя есть внутренний и внешний круг. По первому охлаждающая жидкость циркулирует пока температура антифриза не дойдёт до определённой черты. Обычно это 80 или 90 градусов. Каждый производитель выставляет свои ограничения.

Как только, порог предельной температуры преодолён — жидкость начинает циркулировать по второму кругу. В таком случае она проходит через специальные биметаллические ячейки, в которых охлаждается. Проще говоря, антифриз попадает в радиатор, где быстро остывает при помощи встречного потока воздуха.

Такая система охлаждения двигателя довольно эффективна, так как позволяет работать автомобилю даже на предельных скоростях. К тому же большую роль в охлаждении играет встречный поток воздуха.

Внимание! Система охлаждения двигателя отвечает за работу печки.

Чтобы лучше объяснить принцип работы современных систем охлаждения двигателя углубимся немного в конструкционные особенности схемы. Как вы знаете, основным элементом двигателя являются цилиндры. В них во время поездки постоянно движутся поршни.

Если в качестве примера взять бензиновый двигатель, то во время сжатия свеча запускает искру. Она воспламеняет смесь, что приводит к небольшому взрыву. Естественно, что температура в это время достигает нескольких тысяч градусов.

Чтобы не было перегрева и существует жидкостная рубашка вокруг цилиндров. Она забирает часть тепла и впоследствии отдаёт её. Антифриз в системе охлаждения двигателя постоянно циркулирует.

Как использование разных охлаждающих жидкостей влияет на систему охлаждения

Как уже было сказано выше, ранее в системах охлаждения использовалась обычная вода. Но подобное решение нельзя было назвать крайне удачным. Кроме того, что двигатели постоянно закипали, был ещё один побочный эффект, а именно, накипь. В больших количествах она парализовала работу устройства.

Причина образования накипи кроется в химической структуре воды. Дело в том, что вода на практике не может обладать стопроцентной чистотой. Единственный способ добиться полного исключения всех посторонних элементов — это дистилляция.

Антифризы, циркулируя внутри системы охлаждения двигателя, не создают накипи. К сожалению, процесс постоянной эксплуатации не проходит для них бесследно. Под действием высоких температур вещества поддаются разложению. Результатом данного процесса является образование продуктов распада в виде налёта коррозии и органики.

Довольно часто к охлаждающей жидкости, циркулирующей внутри системы, попадают посторонние субстанции. Как результат эффективность работы всей системы значительно ухудшается.

Внимание! Самый большой вред наносит герметик. Частички этого вещества при заделке пробоин попадают внутрь, смешиваясь с охлаждающей жидкостью.

Результатом всех этих процессов является то, что внутри системы охлаждения двигателя образуются разнообразные налёты. Они ухудшают теплопроводность. В худшем случае в трубах образовываются засоры. Это, в свою очередь, приводит к перегреву.

Частые неисправности системы

Безусловно, жидкостные системы охлаждения обладают множеством преимуществ, в сравнении со своими ближайшими аналогами. Но даже они иногда выходят из строя. Чаще всего в конструкции образовывается течь, которая приводит к утечке жидкости и ухудшению работы двигателя.

Течь в системе охлаждения двигателя может возникнуть по таким причинам:

  1. Вследствие сильных морозов жидкость внутри замерзла, и конструкция была повреждена.
  2. Частой причиной образования течи является негерметичность соединения шлангов с патрубками.
  3. Высокая закоксованность также может стать причиной утечки.
  4. Потеря эластичности в результате высоких температур.
  5. Механическое повреждение.

Именно последняя причина, если верить статистике чаще всего вызывает течи в системах охлаждения двигателей. Больше всего ударов приходится в область радиатора. Печка также довольно часто страдает.

Также в системе охлаждения двигателя нередко выходит из строя термостат. Это происходит из-за постоянного контакта с охлаждающей жидкостью. В результате образуется коррозийный слой.

Итоги

Устройство системы охлаждения двигателя может показаться не особенно сложным. Но для его создания понадобились годы экспериментов и тысячи неудачных попыток. Но сейчас каждый автомобиль может работать на пределе возможного благодаря качественному отводу тепла от мотора.

Вспомним ещё раз немного про данную систему охлаждения.

В жидкостной системе охлаждения используются специальные охлаждающие жидкости — антифризы различных марок, имеющие температуру загустевания — 40 °С и ниже. Антифризы содержат антикоррозионные и антивспенивающие присадки, исключающие образование накипи. Они очень ядовиты и требуют осторожного обращения. По сравнению с водой антифризы имеют меньшую теплоемкость и поэтому отводят теплоту от стенок цилиндров двигателя менее интенсивно.

Так, при охлаждении антифризом температура стенок цилиндров на 15…20°С выше, чем при охлаждении водой. Это ускоряет прогрев двигателя и уменьшает изнашивание цилиндров, но в летнее время может привести к перегреву двигателя.

Оптимальным температурным режимом двигателя при жидкостной системе охлаждения считается такой, при котором температура охлаждающей жидкости в двигателе составляет 80 …100 °С на всех режимах работы двигателя.

В двигателях автомобилей применяется закрытая (герметичная) жидкостная система охлаждения с принудительной циркуляцией охлаждающей жидкости.

Внутренняя полость закрытой системы охлаждения не имеет постоянной связи с окружающей средой, а связь осуществляется через специальные клапаны (при определенном давлении или вакууме), находящиеся в пробках радиатора или расширительного бачка системы. Охлаждающая жидкость в такой системе закипает при 110… 120 °С. Принудительная циркуляция охлаждающей жидкости в системе обеспечивается жидкостным насосом.

Система охлаждения двигателя состоит из:

  • рубашка охлаждения головки и блока цилиндров;
  • радиатор;
  • насос;
  • термостат;
  • вентилятор;
  • расширительный бачок;
  • соединительные трубопроводы и сливные краники.

Кроме того, в систему охлаждения входит отопитель салона кузова автомобиля.

Принцип работы системы охлаждения

Предлагаю сначала рассмотреть принципиальную схему системы охлаждения.

1 — отопитель; 2 — двигатель; 3 — термостат; 4 — насос; 5 — радиатор; 6 — пробка; 7 — вентилятор; 8 — расширительный бачок;
А — малый круг циркуляции (термостат закрыт);
А+Б — большой круг циркуляции (термостат открыт)

Циркуляция жидкости в системе охлаждения осуществляют по двум кругам:

1. Малый круг — жидкость циркулирует при пуске холодного двигателя, обеспечивая его быстрый прогрев.

2.Большой круг — движение циркулирует при прогретом двигателе.

Если говорить проще, то малый круг это циркуляция охлаждающей жидкости БЕЗ радиатора, а большой круг — циркуляция охлаждающей жидкости ЧЕРЕЗ радиатор.

Устройство системы охлаждения различаются по своему устройству в зависимости от модели автомобиля, однако, принцип действия един.

Принцип работы данной системы можно увидеть на следующих видео:

Предлагаю разобрать устройство системы по последовательности работы. Итак, начало работы системы охлаждения происходит при запуске сердца данной системы — жидкостного насоса.

1. Жидкостной насос(water pump)

Жидкостный насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. На двигателях автомобилей применяют лопастные насосы центробежного типа.

Искать наш жидкостной насос или же водяную помпу следует на передней части двигателя(передняя часть эта та, которая ближе к радиатору и там где расположен ремень/цепь).

Жидкостной насос соединён ремнём с коленчатым валом и генератором. Поэтому, чтобы найти наш насос достаточно найти коленчатый вал и найти генератор. Про генератор мы поговорим позже, но пока лишь покажу, что нужно искать. Генератор выглядит как цилиндр, прикрепленный к корпусу двигателя:

1 — генератор; 2 — жидкостной насос; 3 — коленчатый вал

Итак, с расположением разобрались. Теперь давайте рассмотрим его устройство. Напомним, что устройство всей системы и её деталей различно, но принцип работы этой системы одинаков.

1 — Крышка насоса; 2 — Упорное уплотнительное кольцо сальника.
3 — Сальник; 4 — Подшипник валика насоса.
5 — Ступица шкива вентилятора; 6 — Стопорный винт.
7 — Валик насоса; 8 — Корпус насоса; 9 — Крыльчатка насоса.
10 — Приемный патрубок.

Работа насоса заключается в следующем: привод насоса осуществляется от коленчатого вала через ремень. Ремень крутит шкив насоса, вращая ступицу шкива насоса(5). Тот в свою очередь приводит во вращение вал насоса(7), на конце которого находится крыльчатка(9). Охлаждающая жидкость поступает в корпус насоса(8) через приёмный патрубок(10), а крыльчатка перемещает её в рубашку охлаждения(через окошко в корпусе, видно на рисунке, направление движение из насоса показано стрелкой).

Таким образом, насос имеет привод от коленвала, жидкость поступает в него через приёмный патрубок и уходит в рубашку охлаждения.

Работу жидкостного насоса можно посмотреть в этом видео(1:48):

Давайте теперь посмотрим, а откуда поступает жидкость в насос? А жидкость поступает через очень важную деталь — термостат. Именно термостат ответствен за температурный режим.

2. Термостат(thermostat)

Термостат автоматически регулирует температуру воды для ускорения прогрева двигателя после пуска. Именно работа термостата определяет, по каком кругу(большому или малому) пойдёт охлаждающая жидкость.

Выглядит сей агрегат примерно вот так в реальности:

Принцип работы термостата очень прост: термостат имеет чувствительный элемент, внутри которого находится твёрдый наполнитель. При определённой температуре он начинает плавиться и открывает основной клапан, а дополнительный наоборот, закрывается.

Устройство термостата:

1, 6, 11 – патрубки; 2, 8 – клапаны; 3, 7 – пружины; 4 – баллон; 5 – диафрагма; 9 – шток; 10 – наполнитель

Работа термостата проста, её можно посмотреть здесь:

Термостат имеет два входных патрубка 1 и 11, выходной патрубок 6, два клапана (основной 8, дополнительный 2) и чувствительный элемент. Термостат установлен перед входом в насос охлаждающей жидкости и соединяется с ним через патрубок 6.

Соединение:

Через патрубок 1 соединяется с рубашкой охлаждения двигателя ,

Через патрубок 11 — с нижним отводящим бачком радиатора.

Чувствительный элемент термостата состоит из баллона 4, резиновой диафрагмы 5 и штока 9. Внутри баллона между его стенкой и резиновой диафрагмой находится твердый наполнитель 10 (мелкокристаллический воск), обладающий высоким коэффициентом объемного расширения.

Основной клапан 8 термостата с пружиной 7 начинает открываться при температуре охлаждающей жидкости более 80 °С. При температуре менее 80 °С основной клапан закрывает выход жидкости из радиатора, и она поступает из двигателя в насос, проходя через открытый дополнительный клапан 2 термостата с пружиной 3.

При возрастании температуры охлаждающей жидкости более 80 °С в чувствительном элементе плавится твердый наполнитель, и объем его увеличивается. Вследствие этого шток 9 выходит из баллона 4, и баллон перемещается вверх. Дополнительный клапан 2 при этом начинает закрываться и при температуре более 94 °С перекрывает проход охлаждающей жидкости от двигателя к насосу. Основной клапан 8 в этом случае открывается полностью, и охлаждающая жидкость циркулирует через радиатор.

Работа клапана понятно и наглядно показана на рисунке ниже:

А — малый круг, основной клапан закрыт, перепускной — закрыт. Б — большому круг, основной клапан открыт, перепускной — закрыт.

1 — Входной патрубок (от радиатора); 2 — Основной клапан;
3 — Корпус термостата; 4 — Перепускной клапан.
5 — Патрубок перепускного шланга.
6 — Патрубок подачи охлаждающей жидкости в насос.
7 — Крышка термостата; 8 — Поршень.

Итак, мы разобрались с малым кругом. Разобрали устройство насоса и термостата, соединённых между собой. А теперь давайте перейдём к большому кругу и ключевому элементу большого круга — радиатору.

3. Радиатор(radiator/cooler)

Радиатор обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. На легковых автомобилях применяются трубчато-пластинчатые радиаторы.

Итак, различают 2 вида радиаторов: разборный и не разборный.

Снизу представлено их описание:

Хочу ещё раз сказать про расширительный бачок (expansion Tank)

Рядом с радиатором или же на нём устанавливается вентилятор. Давайте теперь перейдём к устройству этого самого вентилятора.

4. Вентилятор(fan)

Вентилятор увеличивает скорость и количество воздуха, проходящего через радиатор. На двигателях автомобилей устанавливают четырех- и шестилопастные вентиляторы.

Если применяется механический вентилятор ,

Вентилятор включает шесть или четыре лопасти(3), приклепанные к крестовине(2). Последняя привернута к шкиву жидкостного насоса(1), который приводится в движение коленчатым валом с помощью ременной передачи(5).

Как мы уже ранее говорили, в зацепление входит так же генератор(4).

Если применяется электровентилятор ,

то вентилятор состоит из электродвигателя 6 и вентилятора 5. Вентилятор — четырехлопастный, крепится на валу электродвигателя. Лопасти на ступице вентилятора расположены неравномерно и под углом к плоскости его вращения. Это увеличивает подачу вентилятора и уменьшает шумность его работы. Для более эффективной работы электровентилятор размещен в кожухе 7, который прикреплен к радиатору. Электровентилятор крепится к кожуху на трех резиновых втулках. Включается и выключается электровентилятор автоматически датчиком 3 в зависимости от температуры охлаждающей жидкости.

Итак, давайте подведём итог. Не будем голословными и подведём итог по какой-нибудь картинке. Не стоит делать акцент на конкретное устройство, но вот принцип работы надо понять, ибо он одинаков во всех системах, как бы не различалось их устройство.



При пуске двигателя начинает вращаться коленчатый вал. Через ременную передачу(напомню, что на ней же находится и генератор) передаётся вращение на шкив жидкостного насоса(13). Тот приводит во вращение вал с крыльчаткой внутри корпуса жидкостного насоса(16). Охлаждающая жидкость поступает в рубашку охлаждения двигателя(7). Далее через выпускной патрубок(4) охлаждающая жидкость возвращается в жидкостной насос через термостат(18). В это время в термостате открыт перепускной клапан, но закрыт основной. Поэтому, жидкость циркулирует через рубашку двигателя без участия радиатора(9). Это обеспечивает быстрый прогрев двигателя. После того как охлаждающая жидкость нагревается, открывается основной клапан термостата и закрывается перепускной клапан. Теперь жидкость не может течь через перепускной патрубок термостата(3) и вынуждена течь через подводящий патрубок(5) в радиатор(9). Там жидкость охлаждается и поступает обратно в жидкостной насос(16) через термостат(18).

Стоит заметить, что некоторая часть охлаждающей жидкости поступает из рубашки охлаждения двигателя в отопитель через патрубок 2 и возвращается из отопителя через патрубок 1. Но об этом мы поговорим в следующей главе.

Надеюсь, теперь система станет понятна для Вас. Прочитав данную статью, я надеюсь, можно будет сориентироваться в другой системе охлаждения, поняв принцип работы этой.

Предлагаю ознакомиться так же со следующей статьёй:

Так как мы затронули систему отопления, следующая моя статья будет об этой системе.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!