Ультразвуковые датчики положения и перемещения. Обзор ультразвуковых датчиков расстояния Что значит ультразвуковой датчик трансивер

Входное напряжение 5 В постоянного тока, подаётся на выводы Vcc и GND датчика.

Подробнее о датчике:

Если подать положительный импульс на вход датчика TRIG длительностью 10 мкс, то датчик отправит звуковую волну (8 импульсов на частоте 40 кГц - ультразвук) и установит уровень логической «1» на выходе ECHO. Звуковая волна отразится от препятствия и вернётся на приёмник датчика, после чего он сбросит уровень на выходе ECHO в логический «0» (то же самое датчик сделает, если звуковая волна не вернётся в течении 38 мс.) В результате время наличия логической «1» на выходе ECHO равно времени прохождения ультразвуковой волны от датчика до препятствия и обратно. Зная скорость распространения звуковой волны в воздухе и время наличия логической «1» на выводе ECHO, можно рассчитать расстояние до препятствия.


Расстояние вычисляется умножением скорости на время (в данном случае скорости распространения звуковой волны V , на время ожидания эха Echo ). Но так звуковая волна проходит расстояние от датчика до объекта и обратно, а нам нужно только до объекта, то результат делим на 2:

L = V * Echo / 2

  • L – расстояние (м);
  • V – скорость звука в воздухе (м/с);
  • Echo – время ожидания эха (с).

Скорость звука в воздухе , в отличии от скорости света, величина не постоянная и сильно зависит от температуры:

V 2 = γ R T / M

  • V – скорость звука в воздухе (м/с)
  • γ – показатель адиабаты воздуха (ед.) = 7/5
  • R – универсальная газовая постоянная (Дж/моль*K) = 8,3144598(48)
  • T ° К) = t°C + 273,15
  • M – молекулярная масса воздуха (г/моль) = 28,98

Подставив в формулу известные значения γ , R , M , получим:

V ≈ 20,042 √T

  • T – абсолютная температура воздуха (° К) = t°C + 273,15

Осталось объединить формулы вычисления V и L , и перевести L из м в см, Echo из с в мкс, T из °К в °C, получим:

L ≈ Echo √(t+273,15) / 1000

  • L – расстояние (см)
  • Echo – время ожидания эха (мкс)
  • t – температура воздуха (°C)

iarduino_HC_SR04 и iarduino_HC_SR04_int , синтаксис обеих библиотек одинаков. Они сами рассчитывают все значения и возвращают только расстояние в см. Температура по умолчанию установлена в 23°C, но её можно указывать. Работа с библиотеками и их функции описаны ниже.

Для работы с датчиком, нами разработаны две библиотеки iarduino_HC_SR04 и iarduino_HC_SR04_int , синтаксис обеих библиотек одинаков.

  • Преимуществом библиотеки iarduino_HC_SR04 является то, что датчики можно подключать к любым выводам Arduino , а недостаток заключается в том, что библиотека ждёт ответа от датчика, который может длиться до 38 мс.
  • Преимуществом библиотеки iarduino_HC_SR04_int является то, что она не ждёт ответа от датчиков (не приостанавливает выполнение скетча), но выводы ECHO датчиков нужно подключать только к тем выводам Arduino , которые используют внешние прерывания.

Подробнее про установку библиотеки читайте в нашей .

Примеры:

Определение расстояния с использованием библиотеки iarduino_HC_SR04:

#include // Подключаем библиотеку iarduino_HC_SR04 sensor(2,3); // Объявляем объект sensor, указывая номера arduino подключенные к выводам TRIG и ECHO датчика // Можно использовать любые выводы Arduino void setup(){ Serial.begin(9600); // Инициализация передачи данных в монитор последовательного порта } void loop(){ delay(500); // Задержка 0,5 сек Serial.println(sensor.distance()); // Вывод расстояния (см) при температуре воздуха, около +23 °C Serial.println(sensor.distance(-20)); // Вывод расстояния (см) при температуре воздуха, около -20 °C Serial.println("=================="); }

Определение расстояния с использованием библиотеки iarduino_HC_SR04_int:

#include // Подключаем библиотеку iarduino_HC_SR04_int sensor(2,3); // Объявляем объект sensor, указывая номера arduino подключенные к выводам TRIG и ECHO датчика // (вывод ECHO нужно подключить к выводу Arduino использующему внешнее прерывание) void setup(){ Serial.begin(9600); // Инициализация передачи данных в монитор последовательного порта } void loop(){ delay(500); // Задержка 0,5 сек Serial.println(sensor.distance()); // Вывод расстояния (см) при температуре воздуха, около +23 °C Serial.println(sensor.distance(-20)); // Вывод расстояния (см) при температуре воздуха, около -20 °C Serial.println("=================="); }

Результат работы обоих примеров:


Из примера видно, что если во время измерений не учитывать температуру воздуха, то можно получить результаты с высокой погрешностью.

Сенсорные устройства, преобразующие электрический ток в волны ультразвука, называются ультразвуковые датчики. Их принцип действия аналогичен работе радара, они улавливают цель по отраженному сигналу. Скорость звука – величина постоянная. На основании этого таким датчиком вычисляется расстояние до некоторого объекта, соответствующее диапазону времени между выходом сигнала и его возвращением.

Устройство и принцип действия

Работают ультразвуковые датчики основываясь на взаимодействии колебаний ультразвука с измеряемым пространством. Ультразвуковые колебания – это механические колебания, которые совершаются с частотой выше 20000 герц, а значит, больше верхней границы колебаний звука, воспринимаемого человеком.

Распространение таких колебаний в газообразных, жидких и твердых средах зависит от параметров самой среды. Скорость передачи колебаний для газов равна 200-1300 метров в секунду, для твердых тел 1500-8000 м/с, для жидких веществ 1100-2000 м/с. Значительно зависит скорость колебаний от давления газа.

Коэффициенты отражения волн ультразвука отличаются на границах различных сред, так же как и их способность поглощения звука. Поэтому ультразвуковые датчики используют для получения информации о разных неэлектрических параметрах с помощью измерения свойств колебаний ультразвука: сдвига фаз, времени затухания, распространения колебаний.

Ультразвуковые способы измерения являются электрическими, так как возбуждение колебаний и их прием осуществляется с помощью электричества. Чаще всего в датчиках применяют пьезоэлементы, преобразователи магнитострикционного вида. Для возбуждения колебаний ультразвуковой частоты применяется эффект растяжения и сжатия пьезокристалла, называемый обратным пьезоэффектом. Поэтому пьезоэлемент применяется как в качестве приемника колебаний, так и в качестве излучателя.

Излучатели магнитострикционного вида применяют эффект деформации ферромагнитов в магнитном поле. Излучатель стержневого вида выполнен в виде тонких листов ферромагнетика, на котором намотана катушка возбуждения.

В магнитострикционных излучателях часто применяются сплавы никеля, ферриты. При нахождении ферромагнитного стержня в переменном магнитном поле, он будет разжиматься, и сжиматься с частотой поля. На рисунке показана зависимость изменения (относительного) длины стержня от напряженности поля Н. Так как направление поля не влияет на знак деформации, то частота деформации будет в 2 раза выше частоты возбуждающего поля.

Чтобы получить значительные механические деформации применяют подмагничивание стержня. Магнитострикционные излучатели действуют в условиях резонанса, если частота поля возбуждения совпадает с колебаниями стержня, определяемыми по формуле:

Где l — длина стержня, Е — модуль упругости, р - плотность.

В излучателе на основе пьезоэлемента применяется кварцевая пластина, к которой подключено переменное напряжение U х, образующее электрическое поле по оси Х.

Обратный эффект состоит в деформации пластины по оси Х. Относительное изменение размера пластины (толщины) равно:
Δa/a=kUx/a
Поперечный эффект состоит в деформации пластины по оси У. Относительное изменение толщины пластины равно:
Δl/l=kUx/a

Размеры пластины не влияют на величину продольной деформации. Поперечная деформация повышается с увеличением отношения l/а. При разности потенциалов до 2500 вольт имеется прямая зависимость деформации и напряжения. При высоких напряжениях деформация повышается не так интенсивно. Амплитуда колебаний доходит до наибольшего значения, когда частота напряжения и частота колебаний пластины совпадают.

Частота продольных колебаний вычисляется:

Модуль упругости определяется по оси Х. Модуль упругости по оси У влияет на частоту поперечных колебаний:

Если сравнить два рассмотренных типа излучателей, то можно сделать вывод, что пьезоэлектрические излучатели могут обеспечить большую частоту колебаний ультразвука.

Рассмотрим работу датчика по времени прохождения сигнала. Обработка отраженного сигнала осуществляется в той же точке, откуда и излучается. Такой метод является непосредственным обнаружением.

Рис 1

Ультразвуковые датчики в момент времени Т 0 излучают сигнал (некоторый набор импульсов) длительностью ∆t, распространяющийся в среде со звуковой скоростью С. При достижении объекта сигналом, часть его отражается и возвращается в приемник за время Т 1 . Схема электронного устройства, предназначенная для обработки сигнала, определяет расстояние, вычисляя время Т 1 — Т 0 .

Для определения расстояния может использоваться схема с одной или двумя головками датчика. В случае с двумя головками, одна из них излучает сигнал, а вторая принимает отраженный сигнал.

Ультразвуковые датчики с одной головкой

Эта схема обладает значительным недостатком, который заключается в том, что после выдачи сигнала необходимо время для успокоения мембраны для дальнейшей работы на прием отраженного сигнала. Этот период времени называют «мертвым» временем.

Мертвое время вынуждает ультразвуковые датчики работать в «слепой зоне». Другими словами, когда объект расположен очень близко, то отраженный сигнал возвращается в измерительную головку настолько быстро, что она еще не перестроилась на работу приема, вследствие чего объект не обнаруживается.

Рис 2

Продолжительность процессов перехода от излучателя до приемника зависит от различных факторов, которыми являются: особенности устройства датчика, материал изготовления, внутреннее затухание, общая колеблющаяся масса.

На рисунке 2 изображена схема функционирования датчика непосредственного обнаружения. С помощью импульса запуска схема возбуждения излучателя становится активной. Она формирует некоторый набор импульсов. Тем же импульсом запуска производится блокировка входа усилителя приемника. При отключении излучателя происходит разблокировка приемника.

Восстановление приемника происходит около 300 мкс. Это намного меньше времени успокоения излучателя. Вследствие этого параметры приемника не оказывают влияния на размер слепой зоны.

При нахождении объекта с необходимой способностью отражения в контролируемой зоне, отраженный сигнал возбуждает на мембране переменное напряжение высокой частоты, которое обрабатывается методами обнаружения сигналов аналогового типа: усиливается, ограничивается, приходит на компаратор.

Это напряжение превышает заданное значение порога обнаружения, что является сигналом того, что объект находится в контролируемой зоне. Схема электронного устройства фиксирует промежуток времени, который прошел с момента активации излучателя и создает на выходе электрический сигнал. Длина этого сигнала зависит от размера этого интервала времени, и передается на цифровой индикатор.

Схема управления после регистрации первого сигнала отражения задерживает создание следующего пускового импульса. При этом она ожидает вероятного прихода отраженного сигнала от наиболее удаленных объектов в контролируемой зоне.

Ультразвуковые датчики с двумя головками

Существенно сократить слепую зону можно путем использования двух разных головок датчика для приемника и излучателя. При этом необходимо создать наибольшую чувствительность схемы правильным выбором одинаковой частоты резонанса для приемника и излучателя.

Отслеживание порога

Размер слепой зоны является важным параметром ультразвукового датчика, который определяет его успех применяемости. Поэтому изготовители стараются снизить эту величину разными способами.

Для таких целей применяют метод отслеживания порога обнаружения. На малых расстояниях в течение процесса перехода сигнал успевает много раз пройти путь между объектом и сенсором. Точность обнаружения значительно уменьшается вследствие искажений, которые вносит сигнал с многократным отражением. Погрешность этого метода возрастает с приближением к объекту.

Это заставляет найти компромисс между точностью измерения, ложной тревоги и чувствительностью обнаружения. На рисунке 3 показан способ отслеживания порога обнаружения.

Рис 3

Он заключается в том, что напряжение порога детектора, которое подается на , создается напряжением, изменяемым во времени и копирующим форму «хвоста» набора импульсов, получаемых во время затухания колебаний мембраны.

Проблема заключается в том, что детектору неизвестно какой по счету из отраженных сигналов превзошел границу порога обнаружения. По рисунку видно, что второй из отраженных сигналов оказался зарегистрированным. Это привело к определению расстояния величиной, превышающей действительную величину в два раза. Такую ситуацию нельзя допускать, поэтому датчики подлежат настройке, во избежание попадания объектов в слепую зону.

Примерные свойства ультразвуковых датчиков в зависимости от расстояния приводятся в таблице

Использование способа отслеживания границы чувствительности дало возможность снизить слепую зону в два раза. Но для применения датчиков возле слепой зоны необходима тщательная проработка. Поэтому в свойствах датчика по расстоянию кроме интервала зондирования приведен интервал настройки.

Интервал зондирования – это интервал расстояния обнаружения, который определяется только возможностями датчика в виде направленности и мощности луча, а также свойствами объекта.

Интервал настройки – это интервал расстояний, в котором можно регулировать датчик по месту для его наилучшего применения в конкретном случае. При этом необходимо учитывать расположение объекта относительно датчика и его свойства.

Датчики REAL3 от Infineon используют ToF-технологию для измерения времени пролета ИК-импульсов света и построения трехмерной картины окружающего пространства. Главной особенностью этих сенсоров становится чувствительная матрица, способная не только фиксировать ИК-излучение, но и измерять амплитуду принимаемых сигналов. Благодаря компактным размерам, сенсоры REAL3 могут использоваться не только в промышленных приложениях, но и в компактных коммерческих устройствах, таких как современные смартфоны.

В настоящее время развитие ультразвуковых сенсоров идет по нескольким направлениям: расширение радиуса действия, уменьшение потребления, снижение габаритов, сокращение стоимости. В данной статье рассказывается о новых бестрансформаторных датчиках 2-го поколения от Elmos Semiconductor с расширенным радиусом действия.

В данном руководстве рассматриваются следующие вопросы: несогласованная работа ультразвуковых датчиков; синхронная работа ультразвуковых датчиков; последовательный запуск и зацикленная работа ультразвуковых датчиков. А так же вопросы и ответы о перекрестных помехах, возникающих при использовании ультразвуковых датчиков.

Ультразвуковые датчики решают многие домашние проблемы, когда дело касается безопасности вашей семьи, защиты вашего банковского счета или защиты вашего дома от повреждений. В статье рассматриваются некоторые примеры их использования.

Ультразвуковые датчики MaxBotix пользуются большой популярностью среди разработчиков мобильных роботов. Это касается как больших крупносерийных, так и маленьких образовательных проектов. В отличие от многих других производителей, MaxBotix выполняет заводскую калибровку своих датчиков, чтобы минимизировать разброс их характеристик. Компания предлагает богатый выбор ультразвуковых сенсоров для самого широкого спектра приложений, а также выполняет разработку датчиков по требованиям заказчика, помогает при выборе оптимальных моделей и обеспечивает техническую поддержку при решении возникающих проблем.

MB1340 – высокопроизводительный ультразвуковой дальномер серии XL-MaxSonar®-AE4™, которая характеризуется высочайшей помехоустойчивостью и очень узкой диаграммой направленности. Изделия линейки предназначены для использования внутри помещений. Датчик MB1340 разработан и откалиброван для получения надежной информации о расстояниях до крупных объектов даже в условиях сильных акустических и электрических шумов.

Ультразвуковые сенсоры чаще всего используются в качестве датчиков приближения или присутствия. При этом требования к ним сильно зависят от конкретного приложения. Где-то ключевыми параметрами становятся метрологические характеристики, где-то важнее оказывается рейтинг защиты IP или возможность совместного использования нескольких сенсоров. Компания MaxBotix, являясь одним из лидеров производства ультразвуковых датчиков, предлагает свои решения для самых разных приложений.

Ультразвуковые датчики серии XL-MaxSonar-EZ (MB12x0) и I2XL-MaxSonar-EZ (MB12x2) предназначены для обнаружения объектов и людей в помещении. Они имеют высокую акустическую выходную мощность и автокалибровку в реальном масштабе времени в каждом цикле измерения для компенсации влияния температуры, влажности, напряжения питания и схему подавления акустических или электрических шумов.

В настоящее время все больше функций, связанных с продажей и консультациями, выполняют электронные терминалы. Специально для интерактивных терминалов MaxBotix предлагает серию ультразвуковых сенсоров приближения ProxSonar. Эти датчики позволяют задавать дистанцию срабатывания в пределах от 30 см до примерно 2 м, что полезно для точной установки алгоритмов поведения терминала.

Самые первые бесконтактные датчики расстояния выдавали информацию только лишь о наличии или отсутствии предмета перед датчиком в виде дискретного сигнала ON/OFF. Эти простейшие датчики до сих пор находят огромное применение в различных областях промышленности. В то же время для решения более сложных задач автоматизации технологических процессов инженерам нужна дополнительная информация о положении объектов измерения. Для этих целей были разработаны датчики, позволяющие определять расстояние до объекта и его положение с помощью аналогового выхода, сигнал на котором пропорционален расстоянию до измеряемого объекта. Такие датчики могут быть использованы во множестве применений, таких как определение расстояния до объекта, измерение толщины, измерение наклона и деформации, измерение профиля изделия, центровка и измерение диаметра.

Датчики для измерения расстояния могут использовать различные принципы измерений: индуктивный, ультразвуковой или оптический, однако все они имеют электрический выходной сигнал, величина которого пропорциональна расстоянию до измеряемого объекта. В таблице 1 представлены основные типы аналоговых бесконтактных датчиков для измерения расстояний и их основные особенности.

Таблица 1

Индуктивные Ультразвуковые Оптические
Триангуляционные Радарные
Расстояние 0 – 20 мм 10 – 10.000 мм 10 – 1.000 мм 10 – 500.000 мм
Разрешение 0,1 мкм 0,1 мм 1 мкм 0,5 мм
Точность 1 мкм 0,2 мм 2 мкм 2 мм
Линейность 0,4% – 5% 0,5% 0,05% - 1% 0,001%
Время 0,3 мс 20 мс 1 мс 1 мс

Индуктивные датчики. Индуктивные датчики расстояния определяют расстояния до проводящих металлических объектов, таких как сталь, алюминий, латунь. Поскольку принцип работы индуктивных датчиков основан на определении токов взаимной индукции, такие датчики очень устойчивы к воздействию неметаллических предметов и помех, таких как, например, пыль или машинное масло. Современные технологии позволяют создать индуктивный датчик с аналоговым выходом имеющей диаметр всего 6 мм и измеряемое расстояние 2 мм. Такие датчики с высоким разрешением и быстрым временем отклика находят применение в большинстве высокоскоростных задач.

Вместе с тем, несмотря на прекрасную точность, разрешение и время отклика, существенная нелинейность, составляющая 3% - 5%, представляет определенную проблему. Что бы преодолеть это некоторые производители определяют выходной сигнал датчика как полиномную функцию, математически описывающую сигнал, и тем самым дают возможность запрограммировать с помощью такой функции большинство современных контроллеров для более точного алгоритма измерения. Типичная функция, описывающая выходной сигнал аналогового индуктивного датчика в зависимости от расстояния, представлена ниже:

Расстояние = a + b (I вых) + c (I вых)2 + d (I вых)3 + e (I вых)4

Где: I вых = выходной ток
Измеряемое расстояние = 0-2 мм, 0-20 мА (I вых)

Коэффициенты функции имеют следующие значения:
a = -0.144334; c = -0.00782; e = -7.27311 ? 10-6; b = 0.151453; d = 0.00040

Тем самым, например, на расстоянии 0,4638 мм выходной сигнал будет 5 мА. Проблемы с линейностью могут быть так же решены с использованием интегрированного в датчик микропроцессора. Такой метод позволяет произвести линеаризацию выходной характеристики датчика и существенно снизить нелинейность. Например, индуктивный датчик диаметром 12 мм и расстоянием измерения 0 – 4 мм., со встроенным микропроцессором имеет линейность лучше, чем 0,4%.

Ультразвуковые датчики. Принцип действия ультразвуковых датчиков расстояния основан на излучении импульсов ультразвука и измерении, пока звуковой импульс, отразившись от объекта измерения, вернется обратно в датчик. При этом достигается разрешения до 0,2 мм.

Благодаря тому, что пьезорезистивный преобразователь может служить как излучателем, так и приемником ультразвуковых импульсов, появляется возможность создать ультразвуковые датчики расстояния с одним преобразователем. Такой преобразователь сначала излучает короткий ультразвуковой импульс. Одновременно с этим, в датчике запускается внутренний таймер. Когда отраженный от объекта ультразвуковой импульс вернется обратно в датчик, таймер останавливается. Время, прошедшее между моментом излучения импульса и моментом, когда отраженный импульс вернулся в датчик, служит основой для вычисления расстояния до объекта. Полный контроль за процессом измерения производится с помощью микропроцессора, обеспечивающего высокую линейность измерений. Наиболее важными особенностями применений ультразвуковых датчиков служит их возможность измерять расстояния до таких сложных объектов таких как, например, сыпучие вещества, жидкости, гранулы, прозрачные или напротив сильно отражающие поверхности. В дополнение ультразвуковыми датчиками можно измерять сравнительно большие расстояния, при этом, сохраняя их небольшие размеры, что может быть существенно для ряда применений.

Однако и ультразвуковые датчики имеют ряд ограничений. Прежде всего, это пена и другие объекты, сильно поглощающие ультразвуковые колебания. Такое поглощение сильно уменьшает измеряемую дистанцию. Сильно изогнутые поверхности так же снижают расстояние и точность измерений, поскольку рассеивают ультразвуковые колебания в различных направлениях. Ультразвуковые датчики излучают импульс в виде широкого конуса, что так же ограничивает возможность измерения расстояния до небольших объектов, увеличивая уровень помех от других объектов, которые так же могут находиться в поле зрения датчика. Некоторые ультразвуковые датчики имеют конус с углом всего 5 градусов. Это позволяет использовать их для измерения намного меньших объектов, например таких, как бутылки или ампулы.

Оптические датчики. Существует множество различных способов измерить расстояние до предмета с помощью оптики: например лазерные интерферометры, датчики с рассеянным отражением света и оптические датчики радарного типа. Каждый из видов датчиков имеет свои сильные и слабые стороны. Лазерные интерферометры имеют большой диапазон измерений и точность несколько нанометров, однако, эти приборы очень дорогие и сложные в эксплуатации. Датчики с рассеянным отражением и аналоговым выходом могут измерять расстояния в широких пределах, однако поскольку они работают с отраженным светом, то могут быть проблемы с измерением расстояний до окрашенных или отражающих объектов. Оптические датчики радарного типа, преимущественно лазерные, могут измерять большие расстояния, однако принцип их работы, основанный на измерении времени распространения света от датчика до объекта и обратно, позволяет измерять с ограниченным разрешением в 2 – 3 мм.

Подавляющее большинство задач по измерению в промышленности приходится на диапазоны от долей микрон до нескольких десятков метров. При этим датчики должны работать с объектами далекими от идеальных: малого размера, имеющих различный цвет, сложную структуру поверхности и перемещающихся с высокой скоростью. Для таких целей наиболее подходят лазерные датчики расстояния, работающие по принципу оптической триангуляции.


Рисунок. Принцип работы оптического датчика расстояния

На рисунке показан принцип работы оптического датчика расстояния. Лазер посылает через линзу луч, который отражается от объекта и фокусируется на линейке из фотодиодов, которая прообразует световой сигнал в электрический. Всякое изменение расстояния до объекта вызывает изменение угла отраженного луча и, следовательно, позиции, которую отраженный луч занимает на линейке фотодиодов. Микроконтроллер обрабатывает сигнал от линейки фотодиодов и преобразует его в аналоговый электрический сигнал.

Наиболее важное качество таких датчиков расстояния состоит в сочетании высокой точности измерения и больших измеряемых расстояниях. Большинство производителей предлагают датчики с разрешением от 1 мкм до 1мм. Однако высокая точность возможна только на относительно коротких расстояниях. Так что, например, точность в 1 мкм на расстояниях в 1 метр получить вряд ли удастся.

Для снижения влияния шумов все лазерные датчики расстояний позволяют проводить интегральные или усредненные измерения. При этом производится множество измерений расстояния до объекта и результат потом усредняется, тем самым повышается точность измерений. Однако большая точность требует большого количества измерений, увеличивая при этом общее время измерения. Так, например, что бы обеспечить точность в 1 мкм типичное время измерения составляет порядка 0,1 сек.

Правильный выбор датчика. Для того, что бы правильно выбрать подходящий датчик расстояния, необходимо ответить на 7 вопросов:

Из чего состоит объект измерения? Какое расстояние до объекта? Какая требуется точность? Насколько быстро движется объект? Какие существуют внешние неблагоприятные условия? Какой тип выходного сигнала необходим? Насколько ограничено пространство для установки датчика?

Получив ответ на эти вопросы, и обладая знанием принципов работы индуктивных, ультразвуковых и оптических датчиков расстояния, Вы сможете наилучшим образом выбрать необходимый датчик.

Ультразвуковой датчик расстояния точно так же, как и оптический, получил широкое использование в автоматизации на различных производствах. В отличие от дальномеров оптического типа, этот вид датчиков обладает меньшим диапазоном измерительных значений, а также значительно меньшую скорость измерений.

Существует несколько преимуществ: сравнительно высокая точность прибора, низкая чувствительность в загрязнению воздуха окружающей среды, к окраске поверхности объектов, а также имеет огромный диапазон температур, при которых его можно эксплуатировать.

Ультразвуковые датчики достаточно компактны, обладают качественной конструкцией, в них отсутствуют различные подвижные детали. Кроме того, оборудование практически не требует обслуживания.

Ультразвуковые датчики используются для вычисления временного промежутка, который может потребоваться звуку для движения от прибора к тому или иному объекту и назад к датчику (функционирование в диффузионном режиме), либо для проверки — был ли принят отправленный сигнал определенным отдельным приемником (для оппозиционного режима работы).

Датчик положения применяется с целью контроля наличия или местоположение разных механизмов, а также для того, чтобы осуществлять подсчет присутствующих объектов. Такой прибор может быть использован и в роли сигнализатора предельного уровня разного рода жидкости либо сыпучих веществ.

Принцип работы ультразвукового датчика положения поддерживает два режима:

  • оппозиционный;
  • диффузионный.

При оппозиционном режиме функционирования передатчик с приемником представляют собой отдельные устройства, которые устанавливают один напротив другого. При этом выход выключателя будет активизирован в том случае, если ультразвуковой пучок сталкивается с препятствием (объектом).

Выделяют несколько особенностей:

  1. Большой диапазон, ведь ультразвуковой пучок преодолевает сигнальное расстояние всего лишь один раз;
  2. Достаточно быстрое переключение;
  3. Не очень воспринимает интерференцию, что позволяет использовать его в довольно трудных условиях;
  4. Сравнительно высокая стоимость монтажных работ, потому что необходимо установить два датчика — передатчик и приемник.

Для автономного включения-выключения освещения совсем не обязательно покупать специальный прибор. Можно сделать , руководствуясь пошаговой инструкцией.

Перед датчик необходимо отрегулировать его и не допускать загрязнений поверхности, поскольку это может негативно влиять на работоспособность детектора.

Диффузионным режимом работы называют функционирование датчиков в том случае, когда излучатель с приемником размещены в одном корпусе. Благодаря этому минимизируют стоимость монтажной работы, ведь нужно закрепить и настроить всего лишь одно устройство.
Однако он характеризуется большим временем срабатывания, чем период, свойственный для , которые действуют в оппозиционном режиме.

Особенности датчиков расстояния и перемещения

Принцип работы ультразвуковых датчиков расстояния и перемещение практически ничем не отличается от выше рассмотренного прибора. Небольшая разница заключается лишь в том, что на выходе присутствует аналоговый сигнал, а не дискретный.

Датчики такого типа используются с целью преобразования линейных показателей расстояния до обнаруженного объекта в электрические сигналы, которые соответствуют стандарту 4-20 мА либо 0-10 Вольт. Точность измерения является не менее 0,5 мм при расстоянии меньше одного метра, а также примерно 1 мм, если расстояние составляет более одного метра.

Для обеспечения безопасности использования домашней электросетью надо знать, . При этом надо учитывать нюансы при установке разных видов этого защитного оборудования.

Но перед монтажом автомата в электрощиток необходимо оценить в различных ситуациях. Успех монтажа и замены зависит от правильно составленных типовых схем и строгого следования этапам работ по установке.

Датчики с аналоговым выходом и настройкой верхней границы измерений требуют указания верхнего предела измерения расстояния. Это выполняется благодаря шлиц потенциометру, который выведен на корпусе прибора.

Ультразвуковые датчики расстояния и перемещения, имеющие аналоговый выход и свойство запоминания диапазона работ, предусматривает такую особенность, как фиксирование настроек нижнего и верхнего пределов измерений.
Это объясняется наличием некоторой энергозависимой памяти и применением метода программирования оборудования. Для того, чтобы настроить диапазон функционирования, перед датчиком необходимо поместить объект возле первой границы измерения, затем следует нажать кнопку для запоминания и переместить предмет на другую границу, после чего опять нажать на эту кнопку.

Как действует датчик с двумя цифровыми выходами?

Ультразвуковой датчик с двумя цифровыми выходами, а также памятью порогов включения, имеет целый ряд особенностей. Так, для порогового регулирования необходимо, чтобы величина провиса либо уровень жидкости не должны превышать одну величину или же быть значительно меньше другой. Привод данного регулятора можно присоединять к корпусу только одного прибора. Настройка порогов срабатывания двух выходов происходит с помощью кнопки, которая находится на панели датчика.

Возможность устанавливать два датчика близко друг к другу объясняется организацией их попеременного действия, что позволяет такая особенность, как вход синхронизации. Благодаря этому можно создавать регулятор с четырьмя порогами, проводящий независимые измерения по обеих парах порогов срабатывания.

Использование схемы ультразвукового датчика направлено на систему регулирования жидкостей, присутствующих в резервуарах, по двум уровням.
Первый датчик осуществляет измерения регулировочных уровней, а второй – на аварийных уровнях. Благодаря синхронизации действий приборы функционируют, не препятствуя друг другу.

Видео с простым примером работы ультразвукового датчика расстояния



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!