Расчет параметров редуктора. Расчет и выбор (Российская методика) – редуктор червячный Смазка червячной передачи и подшипников

Курсовая

Расчет редуктора

Введение

1.3 Кинематический расчет редуктора

2. Расчет закрытой червячной передачи

2.1 Выбор материалов

2.2 Определение допускаемых напряжений

3. Расчет цепной передачи

3.1. Выбор цепи

3.2. Проверка цепи.

3.3. Число звеньев цепи

3.5. Диаметры делительных окружностей звездочек

3.6. Диаметры наружных окружностей звездочек

3.7. Определение сил, действующих на цепь

4. Нагрузки валов редуктора

5.1 Выбор материала валов

6. Проверочный расчет валов

6.1 Расчет червячного вала

9. Смазка редуктора

10. Выбор и расчет муфты


Исходные данные:

Потребляемая мощность привода -

Частота вращения выходного вала -

Ресурс работы -

Коэффициент годового использования - .

Коэффициент суточного использования - .

Кинематическая схема привода


Введение

Привод механизма служит для передачи вращения от вала электродвигателя на исполнительный механизм.


1. Определение исходных данных к расчету редуктора

1.1 Выбор и проверка электродвигателя

Предварительно определим КПД привода.

В общем виде к.п.д. передачи определяется по формуле:

где - к.п.д. отдельных элементов привода.

Для привода данной конструкции к.п.д. определяется по формуле:

где - к.п.д. подшипников качения; ;

К.п.д. червячной передачи; ;

К.п.д. цепной передачи; ;

К.п.д. муфты; .

Рассчитаем требуемую мощность двигателя:

Выбираем двигатель серии АИР с номинальной мощностью Р ном = 5,5 кВт, применив для расчета четыре варианта типа двигателя (см. таблицу 1.1)

Таблица 1.1

Вариант

Тип двигателя

Номинальная мощность Р ном , кВт

Частота вращения, об/мин

синхронная

при номинальном режиме n ном

АИР100 L 2У3

5 ,5

3000

2 850

АИР 112M4 У3

5 ,5

1500

14 32

АИР 132S 6У3

5 ,5

1000

9 60

АИР 132M8 У3

5 ,5


1.2 Определение передаточного числа привода и его ступеней

Находим общее передаточное число для каждого из вариантов:

u = n ном /n вых = n ном /70.

Производим разбивку общего передаточного числа, принимая для всех вариантов передаточное число редуктора u чп = 20:

U рп = u/u зп = u/20.

Данные расчета сводим в таблицу 1.2

Таблица 1.2

Передаточное число

Варианты

Общее для привода

40 , 7

20 , 5

13,7

10 ,2

Плоскоременной передачи

2 , 04

1 , 02

0 , 685

0 , 501

Зубчатого редуктора

Из рассмотренных четырех вариантов выбираем первый (u=2,04; n ном = 3000 об/мин).

1. 3 Кинематический расчет редуктора

Согласно заданию общее передаточное число привода равно:

Частота вращения вала электродвигателя и входного вала редуктора.

Частота вращения выходного вала редуктора

Частота вращения вала транспортера

Процент фактического передаточного числа относительно номинального:

Так как при выполняется условие, то делаем вывод, что кинематический расчет выполнен удовлетворительно.

Мощности, передаваемые отдельными частями привода:

Угловые скорости зубчатых колес:

Вращающие моменты:

Результаты расчетов сведем в таблицу 1.3.

Таблица 1.3

Результаты кинематического расчета.

Параметры

Вал №1

Вал №2

Вал № 3

2850

142,5

4,92

4,091

3, 8

16,5

274,3

519,8

2,04

ω , рад/с

298,3

14,915

7,31

Определим время работы привода:

Часов.


2 . Расчет закрытой червячной передачи

2.1 Выбор материалов

Принимаем для червяка сталь 40Х с закалкой до твёрдости Н RC 45 и последующим шлифованием.

Примем предварительно скорость скольжения в зацеплении

М/с.

Для венца червячного колеса принимаем бронзу Бр010Ф1Н1 (отливка центробежная) .

Таблица 2.1

Материалы зубчатых колес

Твердость и термическая обработка

Предел прочности

Предел текучести

Червяк

Н RC 45-закалка

900 МПа

750 МПа

Колесо

Бр010Ф1Н1 –отливка центробежная

285МПа

1 65 МПа

2.2 Определение допускаемых напряжений

Для колес, изготовленных из материалов группы I /1, c . 31/:

где, 0,9 для червяков с твердостью на поверхности витков >45H RC

МПа

МПа.

Допускаемое напряжение на изгиб

где T и ВР – пределы текучести и прочности бронзы при растяжении; N FE – эквивалентное число циклов нагружения зубьев по изгибной выносливости.

Эквивалентное число циклов нагружения:

Расчет допускаемого напряжения на изгиб:

2.3 Определение геометрических параметров передачи

Межосевое расстояние

Принимаем а w = 160 мм .

Для передаточного числа U =20 принимаем Z 1 =2.

Откуда число зубьев червячного колеса Z 2 = U · Z 1 =20·2=40.

Определим модуль зацепления .

Принимаем m =6,3 мм.

Коэффициент диаметра червяка q =(0,212…0,25) · Z 2 =8,48…10 .

Принимаем q =10.

Межосевое расстояние при стандартных значениях и:

Основные размеры червяка:

делительный диаметр червяка

диаметр вершин витков червяка

диаметр впадин витков червяка

длина нарезанной части шлифованного червяка

принимаем

делительный угол подъёма витка

Основные размеры венца червячного колеса:

делительный диаметр червячного колеса

диаметр вершин зубьев червячного колеса

диаметр впадин зубьев червячного колеса

наибольший диаметр червячного колеса

ширина венца червячного колеса

2.4 Проверочные расчеты передачи по напряжениям

Окружная скорость червяка

Проверка контактного напряжения.

Уточняем КПД червячной передачи:

Коэффициент трения, угол трения при данной скорости скольжения.

По ГОСТ 3675-81 назначаем 8 степень точности передачи.

Коэффициент динамичности

Коэффициент распределения нагрузки: , где коэффициент деформации червяка, вспомогательный коэффициент.

Отсюда:

Коэффициент нагрузки

Проверяем контактное напряжение

Проверка прочности зубьев червячного колеса на изгиб:

Эквивалентное число зубьев

Коэффициент формы зуба

Напряжение изгиба, что ниже вычисленного ранее.

Результаты расчета заносим в табл. 2.2.

Таблица 2.2

Параметр

Значение

Параметр

Значение

Межосевое

расстояние, мм

КПД

0,845

Модуль, мм

ширина венца червячного колеса, мм

Коэффициент диаметра червяка q

длина нарезанной части шлифованного червяка, мм

Делительный угол подъема витков червяка

Диаметры червяка, мм:

75,6

47,88

Диаметры червяка, мм:

264,6

236,88


3. Расчет цепной передачи.

Таблица 3.1.

Передача

Передаточное отношение

2,04

Крутящий момент на ведущей звездочке Т 23 , Нм

2743 00

Крутящий момент на ведомой звездочке Т 4 , Нм

5198 00

Угловая скорость ведущей звездочки, рад/с

14,91 5

Частота вращения ведомой звездочки, рад/с

7,31

3.1. Выбор цепи.

Выбираем цепь приводную роликовую (по ГОСТ 13568–75) и определяем ее шаг по формуле:

Предварительно вычисляем величины, входящие в эту формулу:

Вращающий момент на валу ведущей звездочки

Коэффициент K э= k д k а k н k р k см k п ;

из источника /2/ принимаем: k д =1,25(передача характеризуется умеренными ударами);

k а =1[так как следует принять а=(30-50) t ];

k н =1(при любом наклоне цепи);

k р =1(регулирование натяжения цепи автоматическое);

k см =1,5(смазывание цепи периодическое);

k п =1(работа в одну смену).

Следовательно, Кэ=1,25  1,5=1,875;

Числа зубьев звездочек:

ведущей z 2 =1-2  u =31-2  2,04=27

ведомой z 3 =1  u =27  2,04=54;

Среднее значение [ p ] принимаем ориентировочно по таблице /2/: [ p ]=36МПа; число рядов цепи m =2;

Находим шаг цепи

22,24 мм.

По таблице /2/ принимаем ближайшее большее значение t =25,4 мм; проекция опорной поверхности шарнира А оп =359 мм Q =113,4 кН; q =5,0 кг/м.

3.2. Проверка цепи.

Проверяем цепь по двум показателям:

По частоте вращения – допускаемая для цепи с шагом t =25,4 мм частота вращения [ n 1 ]=800 об/мин, условие n 1 [ n 1 ] выполнено;

По давлению в шарнирах – для данной цепи значение [ p ]=29 МПа, а с учетом примечания уменьшаем на 15% [ p ]=24,7; расчетное давление:

где

Условие p [ p ] выполнено.

3.3. Число звеньев цепи.

Определяем число звеньев цепи.

Округляем до четного числа L t =121.

3.4. Уточнение межосевого расстояния

Для свободного провисания цепи предусматриваем возможность уменьшения межосевого расстояния на 0.4%, 1016  0,004=4,064 мм.

3.5. Диаметры делительных окружностей звездочек.

3.6. Диаметры наружных окружностей звездочек.

здесь d 1 –диаметр ролика цепи: по таблице /2/ d 1 =15,88 мм.

3.7. Определение сил, действующих на цепь.

окружная F t = 2512 Н;

центробежная F v = qv 2 = 5  1,629 2 =13,27 Н;

от провисания цепи F f =9,81 k f qa =9,81  1,5  5  1,016=74,75 H ;

3.8. Проверка коэффициента запаса прочности

По таблице /2/ [ s ]=7,6

Условие s [ s ] выполнено.


Таблица 3.2. Результаты расчета

Рассчитываемый параметр

Обозначение

Размерность

Численное значение

1. Межосевое расстояние

А 23

мм

1 016

2. Число зубьев ведущей звездочки

3. Число зубьев ведомой звездочки

6. Диаметр делительный окружности ведущей звездочки

d д2

мм

218, 7 9

7. Диаметр делительной окружности ведомой звездочки

d д3

мм

43 6 ,84

9. Диаметр наружной окружности ведущей звездочки

D e 2

мм

230,17

10. Диаметр наружной окружности ведомой звездочки

D e 3

мм

448,96

16. Окружная сила

2512

17. Центробежная сила

13,27

18. Сила от провисания цепи

74 , 75

F п

2661, 5


4. Нагрузки валов редуктора

Определение сил в зацеплении закрытой передачи

а) Окружные силы

б) Радиальные силы

в) Осевые силы

Определение консольных сил

Определим силы, действующие со стороны открытой передачи:

Со стороны муфты

F м = 75  =75  = 1242 Н.

Силовая схема нагружения валов редуктора представлена на рисунке 4.1.

Рисунок 4.1. Схема нагружения валов червячного редуктора.


5. Проектный расчет. Эскизная компоновка редуктора

5.1 Выбор материала валов

5.2 Выбор допускаемых напряжений на кручение

Проектный расчет выполняем по напряжениям кручения, при этом принимаем [ к ]= 15…25Н/мм 2 .

5.3 Определение геометрических параметров ступеней валов

Схема к расчету представлена на Рисунке 5.1

Рисунок 5.1 – Червяк.

Диаметр выходного конца ведущего вала находим по формуле

мм,

где [τ К ] - допускаемое напряжение на кручение; [τ К ] = 15 МПа.

Согласовав с диаметром выходного участка электродвигателя (d эд = 28 мм) подустановку стандартной муфты, принимаем d в1 = 30 мм.

где t – высота буртика

t (h – t 1 )+0.5,

h –высота шпонки, h =8 мм

t 1 –глубина паза ступицы, t 1 =5 мм, значит t (8–5)+0.5, t 3,5, принимаем t =4.

принимаем

мм, принимаем 45 мм .

где r –радиус скругления внутреннего кольца подшипника, r =1.5

принимаем.

Червяк конструируем заодно с валом – вал-червяк.

Вал колеса редуктора рассчитываем аналогично.

Схема к расчету вала колеса представлена на рисунке 5.2

Рисунок 5.2 – Вал колеса

Диаметр выходного конца вала

Принимаем

– ориентировочное значение диаметра буртика вала:

Высота шпонки h =10 мм, глубина шпоночного паза t 1 =6 мм,

значит t (10–6)+0.5, t 4,5, принимаем t =5.

принимаем

–диаметр вала под подшипники:

мм, принимаем 70 мм .

– ориентировочное значение диаметра буртика для упора подшипников:

где r = 2 .5

принимаем

Червячное колесо исполняется сборным – центр из серого чугуна СЧ-21-40, а зубчатый венец – с бронзы Бр010Ф1Н1. Зубчатый венец соединен с центром колеса посадкой с натягом и винтовым креплением.

Определим конструктивные элементы центра колеса.

Толщина обода центра колеса.

мм.

Принимаем мм.

Толщина диска центра колеса.

Мм.

Принимаем мм.


Диаметр центрального отверстия центра колеса

Мм.

Наружный диаметр ступицы колеса

Мм.

Принимаем мм.

Длина ступицы

мм.

Принимаем мм.

Рисунок 5.3 Конструкция червячного колеса

Определим толщину обода для червячного колеса в самом тонком месте.

Мм.

Принимаем мм.


Диаметр соединения зубчатого венца с центром колеса

Принимаем мм.

5.4 Предварительный выбор подшипников качения

Предварительно намечаем радиальные шарикоподшипники средней серии по ГОСТ 4338-75; габариты подшипников выбираем по диаметру вала в месте посадки подшипников d п1 = 45 мм и d п2 = 70 мм.

По каталогу подшипников выбираем подшипники .

Таблица 5.1 – Характеристики выбранных подшипников

Условное обозначение подшипника

Размеры, мм

Грузоподъемность, кН

Со

7309А

7214А

26,25

52,7

5.5 Эскизная компоновка редуктора

Определяем размеры для построения эскизной компоновки.

а) зазор между внутренней стенкой корпуса и вращающимся колесом:

х=8…10 мм, принимаем х=10 мм.

б) расстояние между дном корпуса и червячным колесом:

у=30 мм


6. Проверочный расчет валов

6.1 Расчет червячного вала

6.1.1 Схема нагружения червяка

Рисунок 6.1 – Схема нагружения ведущего вала

в плоскости xy

в плоскости yz

Суммарные изгибающие моменты

6.1.2 Уточненный расчет вала

Проверим правильность определения диаметра вала в сечении под червяком

Для вала принимаем сталь 45 ГОСТ 1050-88. Термообработка улучшение – НВ 240…255

Пределы выносливости

d =45мм

Момент сопротивления сечения

6.1.3 Расчет вала на усталость

Среднее напряжение изгиба

где, - масштабные факторы,

где согласно табл.

При проточке.

Тогда

Окончательно получим

6.1.4 Расчет подшипников

где: V V =1 – при вращении внутреннего кольца.- коэффициент безопасности для редукторов всех конструкций. - температурный коэффициент, при t≤100°С

Для опоры В как наиболее нагруженной

Тогда

так как то X=1, Y=0.

6.2. Расчет тихоходного вала.

6.2.1 Схема нагружения тихоходного вала

Рисунок 6.2 – Схема нагружения тихоходного вала.

в плоскости x у.

в плоскости yz

Суммарные изгибающие моменты

6.2.2 Уточненный расчет вала

Проверим правильность определения диаметра вала в сечении под червячным колесом

Эквивалентный изгибающий момент в сечении

Для вала принимаем сталь 45 ГОСТ 1050-88. Термообработка улучшение – НВ 240…255,

Пределы выносливости

Допускаемое напряжение изгиба

где: - масштабный фактор. При d =70мм

Коэффициент запаса прочности. Принимаем

Коэффициент концентрации напряжения, для шпоночного соединения

Момент сопротивления сечения

Напряжение в сечении меньше допускаемого, поэтому окончательно принимаем диаметр вала в месте установки подшипника.

6.2.3 Расчет вала на усталость

Принимаем, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения – по пульсирующему.

Наиболее опасным является сечение в месте расположения червяка.

Моменты сопротивления сечения

Амплитуда и среднее напряжение цикла касательных напряжений

Амплитуда нормальных напряжений изгиба

Среднее напряжение изгиба

Коэффициенты запаса усталостной прочности по нормальным и касательным напряжениям

где, - масштабные факторы,

Коэффициенты концентрации напряжений с учетом влияний шероховатости поверхности.

где согласно табл.

Коэффициенты влияния шероховатости поверхности

При проточке.

Тогда

При отсутствии упрочнения вала.

Коэффициенты чувствительности материала к асимметрии цикла напряжений.

Окончательно получим

Так как, то вал достаточно прочен.

6.2.4 Расчет подшипников

Эквивалентную динамическую нагрузку подшипника определим по формуле:

где: V – коэффициент вращения кольца. V =1 – при вращении внутреннего кольца.

- коэффициент безопасности. для редукторов всех конструкций.

- температурный коэффициент, при t≤100°С.

Для опоры D как наиболее нагруженной

тогда

Так как то X=1, Y=0.

Расчетная долговечность подшипника

Так как срок службы редуктора, то подшипник подобран правильно.


7. Конструктивная компоновка привода

Толщина стенки корпуса и крышки

принимаем

принимаем

Толщина нижнего пояса (фланца)

Толщина верхнего пояса (фланца)

Толщина нижнего пояса корпуса

Толщина рёбер основания корпуса

Толщина рёбер крышки

Диаметр фундаментных болтов

принимаем

Ширина лапы при установке винта с шестигранной головкой

Расстояние от оси винта до края лапы

принимаем

Толщина лапы корпуса

принимаем

Остальные размеры принимаем конструктивно при построении чертежа.


8. Проверка шпоночных соединений

Размеры шпонок выбираем, в зависимости от диаметра вала

Принимаем шпонки призматические по ГОСТ 23360-78. Материал шпонок – сталь 45 нормализованная. Допускаемое напряжение смятия боковой поверхности, длину шпонки принимаем на 5…10мм меньше длины ступицы.

Условие прочности

Соединение вала с зубчатым колесом 2, диаметр соединения 45мм.

Сечение шпонки, длина шпонки 40 мм.

Расчет остальных шпонок в редукторе представим в виде таблицы

Таблица 8.1 – Расчет шпоночных соединений.

№ вала

, Нм

d в,мм

L, мм

I

16,5

30

10х8

5

40

12,2

II

274,3

50

16х10

6

80

42,6

II

274,3

80

22х14

9

70

28,6

Таким образом, все шпоночные соединения обеспечивают заданную прочность и передают вращающий момент.


9. Смазка редуктора

Смазка зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение колес примерно на 15…20мм.

Объем масляной ванны V, м 3 , определяем из расчета масла на 1 кВт передаваемой мощности.

При внутренних размерах корпуса редуктора: В=415 мм L=145 мм, определим необходимую высоту масла в корпусе редуктора

Принимаем масло индустриальное Н100А ГОСТ 20799-75.

При окружной скорости колес более 1м/с брызгами масла покрываются все детали передач и внутренних поверхностей стенок, стекающие с этих элементов капли масла попадают в подшипники.


10. Выбор и расчет муфты

Исходя из условий работы данного привода выбираем муфту упругую втулочно - пальцевую, со следующими параметрами Т = 125Нм, d = 30мм, D = 120мм, L = 165 мм, l = 82 мм.

Рис 10.1.Эскиз муфты

Предельные смещения валов:

-радиальные;

-угловые;

-осевые.

10.1. Проверяем на смятие упругие элементы, в предположении равномерного распределения нагрузки между пальцами:

,

где - вращающий момент, Нм,

- диаметр пальца,

- длина упругого элемента,

- число пальцев, = 6, потому что < 125 Нм

10.2 Рассчитываем на изгиб пальцы (Сталь 45).

с – зазор между полумуфтами, с = 3…5 мм.

Выбранная муфта пригодна для использования в данном приводе.


Заключение

Электродвигатель превращает электрическую энергию в механическую, вал двигателя совершает вращательное движение, но число оборотов вала двигателя очень велико для скорости движения рабочего органа. Для снижения числа оборотов и увеличения момента вращения и служит данный редуктор.

В данном курсовом проекте разработан одноступенчатый червячный редуктор. Цель работы выучить основы конструирования и получить навыки инженера-конструктора.

К важным требованиям проектирования относится экономичность в изготовлении и эксплуатации, удобство в обслуживании и ремонте, надежность и долговечность редуктора.

В пояснительной записке выполнен расчет необходимый для конструирования привода механизма.


Список использованных источников

1. Дунаев П.Ф. Конструирование узлов и деталей машин- М.: Высшая школа, 2008, - 447 с.

2. Киркач Н.Ф., Баласанян Р.А. Расчет и проектирование деталей м а шин.- Х.: Основа, 2010, - 276 с.

3. Чернавский С.А. Курсовое проектирование деталей машин.- М.: Машиностроение, 2008, - 416 с.

4. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб пособие для техникумов. – М.: Высш. шк., 2010. – 432с.

Описание программы









Программа написана в Exsel, очень проста в пользовании и в освоении. Расчет производится по методике Чернаского .
1. Исходные данные:
1.1. Допускаемое контактное напряжение, Мпа ;
1.2. Принятое передаточное отношение, U ;
1.3. Вращающий момент на валу шестерни t1, кН*мм ;
1.4. Вращающий момент на валу колеса t2, кН*мм ;
1.5. Коэффициент;
1.6. Коэффициент ширины венца по межосевому расстоянию.

2. Стандартный окружной модуль, мм :
2.1. допустимое мин;
2.2. Допустимое макс;
2.3 Принимаемое по ГОСТ.

3. Расчет количество зубьев :
3.1. Принятое передаточное отношение, u;
3.2. Принятое межосевое расстояние, мм;
3.3. Принятый модуль зацепления;
3.4. Количество зубьев шестерни (принятое);
3.5. Количество зубьев колеса (принятое).

4. Расчет диаметров колес ;
4.1. Расчет делительных диаметров шестерни и колеса, мм;
4.2. Расчет диаметров вершин зубьев, мм.

5. Расчет прочих параметров:
5.1. Расчет ширины шестерни и колеса, мм;
5.2. Окружная скорость шестерни.

6. Проверка контактных напряжений ;
6.1. Расчет контактных напряжений, Мпа;
6.2. Сравнение с допустимым контактным напряжением.

7. Силы в зацеплении;
7.1. Расчет окружной силы, Н;
7.2. Расчет радиальной силы, Н;
7.3. Эквивалентное число зубьев;

8. Допустимое напряжение изгиба :
8.1. Выбор материала шестерни и колеса;
8.2. Расчет допустимого напряжения

9. Проверка по напряжениям изгиба;
9.1. Расчет напряжения изгиба шестерни и колеса;
9.2. Выполнения условий.

Краткая характеристика прямозубой цилиндрической передачи

Прямозубая цилиндрическая передача является самой распространенной механической передачей с непосредственным контактом. Прямозубая передача менее вынослива, чем другие подобные и менее долговечна. В такой передаче при работе нагружается только один зуб, а также создается вибрация при работе механизма. За счет этого использовать такую передачу при больших скоростях невозможно и нецелесообразно. Срок службы прямозубой цилиндрической передачи гораздо ниже, чем других зубчатых передач (косозубых, шевронные, криволинейные и т.д.). Основными преимуществами такой передачи являются легкость изготовления и отсутствие осевой силы в опорах, что снижает сложность опор редуктора, а соответственно, снижает стоимость самого редуктора.

Инженер-конструктор является творцом новой техники, и уровнем его творческой работы в большей степени определяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого разума. Решающая роль успеха при создании новой техники определяется тем, что заложено на чертеже конструктора. С развитием науки и техники проблемные вопросы решаются с учетом все возрастающего числа факторов, базирующихся на данных различных наук. При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механики, машиностроительного черчения и т.д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам.

При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требуемая долговечность, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы.

Из всех видов передач зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. Зубчатые передачи в сравнении с другими механическими передачами обладают большой надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач; они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт.

К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.

Косозубые колеса применяют для ответственных передач при средних и высоких скоростях. Объем их применения – свыше 30% объема применения всех цилиндрических колес в машинах; и этот процент непрерывно возрастает. Косозубые колеса с твердыми поверхностями зубьев требуют повышенной защиты от загрязнений во избежание неравномерного износа по длине контактных линий и опасности выкрашивания.

Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предшествующий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению.

Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и многопоточные и т.д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технологические требования, предпочитаемое количество изделий.

При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения – 85%, в дорожных машинах – 75%, в автомобилях – 10% и т.д.

Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.

Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением.

Выбор электродвигателя и кинематический расчёт

По табл. 1.1 примем следующие значения КПД:

– для закрытой зубчатой цилиндрической передачи: h1 = 0,975

– для закрытой зубчатой цилиндрической передачи: h2 = 0,975

Общий КПД привода будет:

h = h1 · … · hn · hподш. 3 · hмуфты2 = 0,975 · 0,975 · 0,993 · 0,982 = 0,886

где hподш. = 0,99 – КПД одного подшипника.

hмуфты = 0,98 – КПД одной муфты.

Угловая скорость на выходном валу будет:

wвых. = 2 · V / D = 2 · 3 · 103 / 320 = 18,75 рад/с

Требуемая мощность двигателя будет:

Pтреб. = F · V / h = 3,5 · 3 / 0,886 = 11,851 кВт

В таблице П. 1 (см. приложение) по требуемой мощности выбираем электродвигатель 160S4, с синхронной частотой вращения 1500 об/мин, с параметрами: Pдвиг.=15 кВт и скольжением 2,3% (ГОСТ 19523–81). Номинальная частота вращения nдвиг. = 1500–1500·2,3/100=1465,5 об/мин, угловая скорость wдвиг. = p · nдвиг. / 30 = 3,14 · 1465,5 / 30 = 153,467 рад/с.

Oбщее передаточное отношение:

u = wвход. / wвых. = 153,467 / 18,75 = 8,185


Для передач выбрали следующие передаточные числа:

Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу:

Мощности на валах:

P1 = Pтреб. · hподш. · h(муфты 1) = 11,851 · 103 · 0,99 · 0,98 = 11497,84 Вт

P2 = P1 · h1 · hподш.= 11497,84 · 0,975 · 0,99 = 11098,29 Вт

P3 = P2 · h2 · hподш. = 11098,29 · 0,975 · 0,99 = 10393,388 Вт

Вращающие моменты на валах:

T1 = P1 / w1 = (11497,84 · 103) / 153,467 = 74920,602 Н·мм

T2 = P2 / w2 = (11098,29 · 103) / 48,72 = 227797,414 Н·мм

T3 = P3 / w3 = (10393,388 · 103) / 19,488 = 533322,455 Н·мм

По таблице П. 1 (см. приложение учебника Чернавского) выбран электродвигатель 160S4, с синхронной частотой вращения 1500 об/мин, с мощностью Pдвиг.=15 кВт и скольжением 2,3% (ГОСТ 19523–81). Номинальная частота вращения с учётом скольжения nдвиг. = 1465,5 об/мин.


Передаточные числа и КПД передач

Рассчитанные частоты, угловые скорости вращения валов и моменты на валах

2. Расчёт 1-й зубчатой цилиндрической передачи

Диаметр ступицы: dступ = (1,5…1,8) · dвала = 1,5 · 50 = 75 мм.

Длина ступицы: Lступ = (0,8…1,5) · dвала = 0,8 · 50 = 40 мм = 50 мм.

5.4 Цилиндрическое колесо 2-й передачи

Диаметр ступицы: dступ = (1,5…1,8) · dвала = 1,5 · 65 = 97,5 мм. = 98 мм.

Длина ступицы: Lступ = (0,8…1,5) · dвала = 1 · 65 = 65 мм

Толщина обода: dо = (2,5…4) · mn = 2,5 · 2 = 5 мм.

Так как толщина обода должна быть не менее 8 мм, то принимаем dо = 8 мм.

где mn = 2 мм – модуль нормальный.

Толщина диска: С = (0,2…0,3) · b2 = 0,2 · 45 = 9 мм

где b2 = 45 мм – ширина зубчатого венца.

Толщина рёбер: s = 0,8 · C = 0,8 · 9 = 7,2 мм = 7 мм.

Внутренний диаметр обода:

Dобода = Da2 – 2 · (2 · mn + do) = 262 – 2 · (2 · 2 + 8) = 238 мм

Диаметр центровой окружности:

DC отв. = 0,5 · (Doбода + dступ.) = 0,5 · (238 + 98) = 168 мм = 169 мм

где Doбода = 238 мм – внутренний диаметр обода.

Диаметр отверстий: Dотв. = Doбода – dступ.) / 4 = (238 – 98) / 4 = 35 мм

Фаска: n = 0,5 · mn = 0,5 · 2 = 1 мм

6. Выбор муфт

6.1 Выбор муфты на входном валу привода

Так как нет необходимости в больших компенсирующих способностях муфт и, в процессе монтажа и эксплуатации соблюдается достаточная соосность валов, то возможен подбор муфты упругой с резиновой звёздочкой. Муфты обладают большой радиальной, угловой и осевой жёсткостью. Выбор муфты упругой с резиновой звёздочкой производится в зависимости от диаметров соединяемых валов, расчётного передаваемого крутящего момента и максимально допустимой частоты вращения вала. Диаметры соединяемых валов:

d (эл. двиг.) = 42 мм;

d (1-го вала) = 36 мм;

Передаваемый крутящий момент через муфту:

T = 74,921 Н·м

Расчётный передаваемый крутящий момент через муфту:

Tр = kр · T = 1,5 · 74,921 = 112,381 Н·м

здесь kр = 1,5 – коэффициент, учитывающий условия эксплуатации; значения его приведены в таблице 11.3 .

Частота вращения муфты:

n = 1465,5 об./мин.

Выбираем муфту упругую с резиновой звёздочкой 250–42–1–36–1-У3 ГОСТ 14084–93 (по табл. К23 ) Для расчётного момента более 16 Н·м число «лучей» звёздочки будет 6.

Радиальная сила, с которой муфта упругая со звёздочкой действует на вал, равна:


Fм = СDr · Dr,

где: СDr = 1320 Н/мм – радиальная жёсткость данной муфты; Dr = 0,4 мм – радиальное смещение. Тогда:

Крутящий момент на валу Tкр. = 227797,414 H·мм.

2 сечение

Диаметр вала в данном сечении D = 50 мм. Концентрация напряжений обусловлена наличием двух шпоночных канавок. Ширина шпоночной канавки b = 14 мм, глубина шпоночной канавки t1 = 5,5 мм.

sv = Mизг. / Wнетто = 256626,659 / 9222,261 = 27,827 МПа,

3,142 · 503 / 32 – 14 · 5,5 · (50 – 5,5) 2/ 50 = 9222,261 мм 3 ,

sm = Fa / (p · D2 / 4) = 0 / (3,142 · 502 / 4) = 0 МПа, Fa = 0 МПа – продольная сила,

– ys = 0,2 – см. стр. 164 ;

– es = 0,85 – находим по таблице 8.8 ;

Ss = 335,4 / ((1,8 / (0,85 · 0,97)) · 27,827 + 0,2 · 0) = 5,521.

tv = tm = tmax / 2 = 0,5 · Tкр. / Wк нетто = 0,5 · 227797,414 / 21494,108 = 5,299 МПа,

3,142 · 503 / 16 – 14 · 5,5 · (50 – 5,5) 2/ 50 = 21494,108 мм 3 ,

где b=14 мм – ширина шпоночного паза; t1=5,5 мм – глубина шпоночного паза;

– yt = 0.1 – см. стр. 166 ;

– et = 0,73 – находим по таблице 8.8 ;

St = 194,532 / ((1,7 / (0,73 · 0,97)) · 5,299 + 0,1 · 5,299) = 14,68.

S = Ss · St / (Ss2 + St2) 1/2 = 5,521 · 14,68 / (5,5212 + 14,682) 1/2 = 5,168

3 сечение

Диаметр вала в данном сечении D = 55 мм. Концентрация напряжений обусловлена наличием двух шпоночных канавок. Ширина шпоночной канавки b = 16 мм, глубина шпоночной канавки t1 = 6 мм.

Коэффициент запаса прочности по нормальным напряжениям:

Ss = s-1 / ((ks / (es · b)) · sv + ys · sm), где:

– амплитуда цикла нормальных напряжений:

sv = Mизг. / Wнетто = 187629,063 / 12142,991 = 15,452 МПа,


Wнетто = p · D3 / 32 – b · t1 · (D – t1) 2/ D =

3,142 · 553 / 32 – 16 · 6 · (55 – 6) 2/ 55 = 12142,991 мм 3 ,

– среднее напряжение цикла нормальных напряжений:

sm = Fa / (p · D2 / 4) = 0 / (3,142 · 552 / 4) = 0 МПа, Fa = 0 МПа – продольная сила,

– ys = 0,2 – см. стр. 164 ;

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 ;

– ks = 1,8 – находим по таблице 8.5 ;

Ss = 335,4 / ((1,8 / (0,82 · 0,97)) · 15,452 + 0,2 · 0) = 9,592.

Коэффициент запаса прочности по касательным напряжениям:

St = t-1 / ((k t / (et · b)) · tv + yt · tm), где:

– амплитуда и среднее напряжение отнулевого цикла:

tv = tm = tmax / 2 = 0,5 · Tкр. / Wк нетто = 0,5 · 227797,414 / 28476,818 = 4 МПа,


Wк нетто = p · D3 / 16 – b · t1 · (D – t1) 2/ D =

3,142 · 553 / 16 – 16 · 6 · (55 – 6) 2/ 55 = 28476,818 мм 3 ,

где b=16 мм – ширина шпоночного паза; t1=6 мм – глубина шпоночного паза;

– yt = 0.1 – см. стр. 166 ;

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 .

– kt = 1,7 – находим по таблице 8.5 ;

St = 194,532 / ((1,7 / (0,7 · 0,97)) · 4 + 0,1 · 4) = 18,679.

Результирующий коэффициент запаса прочности:

S = Ss · St / (Ss2 + St2) 1/2 = 9,592 · 18,679 / (9,5922 + 18,6792) 1/2 = 8,533

Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

12.3 Расчёт 3-го вала

Крутящий момент на валу Tкр. = 533322,455 H·мм.

Для данного вала выбран материал: сталь 45. Для этого материала:

– предел прочности sb = 780 МПа;

– предел выносливости стали при симметричном цикле изгиба

s-1 = 0,43 · sb = 0,43 · 780 = 335,4 МПа;

– предел выносливости стали при симметричном цикле кручения

t-1 = 0,58 · s-1 = 0,58 · 335,4 = 194,532 МПа.

1 сечение

Диаметр вала в данном сечении D = 55 мм. Это сечение при передаче вращающего момента через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки.

Коэффициент запаса прочности по касательным напряжениям:

St = t-1 / ((k t / (et · b)) · tv + yt · tm), где:

– амплитуда и среднее напряжение отнулевого цикла:

tv = tm = tmax / 2 = 0,5 · Tкр. / Wк нетто = 0,5 · 533322,455 / 30572,237 = 8,722 МПа,

Wк нетто = p · D3 / 16 – b · t1 · (D – t1) 2/ (2 · D) =

3,142 · 553 / 16 – 16 · 6 · (55 – 6) 2/ (2 · 55) = 30572,237 мм 3

где b=16 мм – ширина шпоночного паза; t1=6 мм – глубина шпоночного паза;

– yt = 0.1 – см. стр. 166 ;

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 .

– kt = 1,7 – находим по таблице 8.5 ;

– et = 0,7 – находим по таблице 8.8 ;

St = 194,532 / ((1,7 / (0,7 · 0,97)) · 8,722 + 0,1 · 8,722) = 8,566.

Радиальная сила муфты, действующая на вал, найдена в разделе «Выбор муфт» и равна Fмуфт. = 225 Н. Приняв у вала длину посадочной части равной длине l = 225 мм, Находим изгибающий момент в сечении:

Mизг. = Tмуфт. · l / 2 = 2160 · 225 / 2 = 243000 Н·мм.

Коэффициент запаса прочности по нормальным напряжениям:

Ss = s-1 / ((ks / (es · b)) · sv + ys · sm), где:

– амплитуда цикла нормальных напряжений:

sv = Mизг. / Wнетто = 73028,93 / 14238,409 = 17,067 МПа,

Wнетто = p · D3 / 32 – b · t1 · (D – t1) 2/ (2 · D) =

3,142 · 553 / 32 – 16 · 6 · (55 – 6) 2/ (2 · 55) = 14238,409 мм 3 ,

где b=16 мм – ширина шпоночного паза; t1=6 мм – глубина шпоночного паза;

– среднее напряжение цикла нормальных напряжений:

sm = Fa / (p · D2 / 4) = 0 / (3,142 · 552 / 4) = 0 МПа, где

Fa = 0 МПа – продольная сила в сечении,

– ys = 0,2 – см. стр. 164 ;

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 ;

– ks = 1,8 – находим по таблице 8.5 ;

– es = 0,82 – находим по таблице 8.8 ;

Ss = 335,4 / ((1,8 / (0,82 · 0,97)) · 17,067 + 0,2 · 0) = 8,684.

Результирующий коэффициент запаса прочности:

S = Ss · St / (Ss2 + St2) 1/2 = 8,684 · 8,566 / (8,6842 + 8,5662) 1/2 = 6,098

Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

2 сечение

Диаметр вала в данном сечении D = 60 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7 ).

Коэффициент запаса прочности по нормальным напряжениям:

Ss = s-1 / ((ks / (es · b)) · sv + ys · sm), где:

– амплитуда цикла нормальных напряжений:

sv = Mизг. / Wнетто = 280800 / 21205,75 = 13,242 МПа,

Wнетто = p · D3 / 32 = 3,142 · 603 / 32 = 21205,75 мм 3

– среднее напряжение цикла нормальных напряжений:


sm = Fa / (p · D2 / 4) = 0 / (3,142 · 602 / 4) = 0 МПа, Fa = 0 МПа – продольная сила,

– ys = 0,2 – см. стр. 164 ;

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 ;

– ks/es = 3,102 – находим по таблице 8.7 ;

Ss = 335,4 / ((3,102 / 0,97) · 13,242 + 0,2 · 0) = 7,92.

Коэффициент запаса прочности по касательным напряжениям:

St = t-1 / ((k t / (et · b)) · tv + yt · tm), где:

– амплитуда и среднее напряжение отнулевого цикла:

tv = tm = tmax / 2 = 0,5 · Tкр. / Wк нетто = 0,5 · 533322,455 / 42411,501 = 6,287 МПа,

Wк нетто = p · D3 / 16 = 3,142 · 603 / 16 = 42411,501 мм 3

– yt = 0.1 – см. стр. 166 ;

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 .

– kt/et = 2,202 – находим по таблице 8.7 ;

St = 194,532 / ((2,202 / 0,97) · 6,287 + 0,1 · 6,287) = 13,055.

Результирующий коэффициент запаса прочности:

S = Ss · St / (Ss2 + St2) 1/2 = 7,92 · 13,055 / (7,922 + 13,0552) 1/2 = 6,771

Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

3 сечение

Диаметр вала в данном сечении D = 65 мм. Концентрация напряжений обусловлена наличием двух шпоночных канавок. Ширина шпоночной канавки b = 18 мм, глубина шпоночной канавки t1 = 7 мм.

Коэффициент запаса прочности по нормальным напряжениям:

Ss = s-1 / ((ks / (es · b)) · sv + ys · sm), где:

– амплитуда цикла нормальных напряжений:

sv = Mизг. / Wнетто = 392181,848 / 20440,262 = 19,187 МПа,

Wнетто = p · D3 / 32 – b · t1 · (D – t1) 2/ D = 3,142 · 653 / 32 – 18 · 7 · (65 – 7) 2/ 65 = 20440,262 мм 3 ,

– среднее напряжение цикла нормальных напряжений:


sm = Fa / (p · D2 / 4) = 0 / (3,142 · 652 / 4) = 0 МПа, Fa = 0 МПа – продольная сила,

– ys = 0,2 – см. стр. 164 ;

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 ;

– ks = 1,8 – находим по таблице 8.5 ;

– es = 0,82 – находим по таблице 8.8 ;

Ss = 335,4 / ((1,8 / (0,82 · 0,97)) · 19,187 + 0,2 · 0) = 7,724.

Коэффициент запаса прочности по касательным напряжениям:

St = t-1 / ((k t / (et · b)) · tv + yt · tm), где:

– амплитуда и среднее напряжение отнулевого цикла:

tv = tm = tmax / 2 = 0,5 · Tкр. / Wк нетто = 0,5 · 533322,455 / 47401,508 = 5,626 МПа,

Wк нетто = p · D3 / 16 – b · t1 · (D – t1) 2/ D =

3,142 · 653 / 16 – 18 · 7 · (65 – 7) 2/ 65 = 47401,508 мм 3 ,

где b=18 мм – ширина шпоночного паза; t1=7 мм – глубина шпоночного паза;

– yt = 0.1 – см. стр. 166 ;

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 .

– kt = 1,7 – находим по таблице 8.5 ;

– et = 0,7 – находим по таблице 8.8 ;

St = 194,532 / ((1,7 / (0,7 · 0,97)) · 5,626 + 0,1 · 5,626) = 13,28.

Результирующий коэффициент запаса прочности:

S = Ss · St / (Ss2 + St2) 1/2 = 7,724 · 13,28 / (7,7242 + 13,282) 1/2 = 6,677

Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

13. Тепловой расчёт редуктора

Для проектируемого редуктора площадь теплоотводящей поверхности А = 0,73 мм 2 (здесь учитывалась также площадь днища, потому что конструкция опорных лап обеспечивает циркуляцию воздуха около днища).

По формуле 10.1 условие работы редуктора без перегрева при продолжительной работе:

Dt = tм – tв = Pтр · (1 – h) / (Kt · A) £ ,

где Ртр = 11,851 кВт – требуемая мощность для работы привода; tм – температура масла; tв – температура воздуха.

Считаем, что обеспечивается нормальная циркуляция воздуха, и принимаем коэффициент теплоотдачи Kt = 15 Вт/(м2·oC). Тогда:

Dt = 11851 · (1 – 0,886) / (15 · 0,73) = 123,38o > ,

где = 50oС – допускаемый перепад температур.

Для уменьшения Dt следует соответственно увеличить теплоотдающую поверхность корпуса редуктора пропорционально отношению:

Dt / = 123,38 / 50 = 2,468, сделав корпус ребристым.

14. Выбор сорта масла

Смазывание элементов передач редуктора производится окунанием нижних элементов в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение элемента передачи примерно на 10–20 мм. Объём масляной ванны V определяется из расчёта 0,25 дм3 масла на 1 кВт передаваемой мощности:

V = 0,25 · 11,851 = 2,963 дм3.

По таблице 10.8 устанавливаем вязкость масла. При контактных напряжениях sH = 515,268 МПа и скорости v = 2,485 м/с рекомендуемая вязкость масла должна быть примерно равна 30 · 10–6 м/с2. По таблице 10.10 принимаем масло индустриальное И-30А (по ГОСТ 20799–75*).

Выбираем для подшипников качения пластичную смазку УТ-1 по ГОСТ 1957–73 (см. табл. 9.14 ). Камеры подшипников заполняются данной смазкой и периодически пополняются ей.

15. Выбор посадок

Посадки элементов передач на валы – Н7/р6, что по СТ СЭВ 144–75 соответствует легкопрессовой посадке.

Посадки муфт на валы редуктора – Н8/h8.

Шейки валов под подшипники выполняем с отклонением вала k6.

Остальные посадки назначаем, пользуясь данными таблицы 8.11 .

16. Технология сборки редуктора

Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вида редуктора, начиная с узлов валов.

На валы закладывают шпонки и напрессовывают элементы передач редуктора. Мазеудерживающие кольца и подшипники следует насаживать, предварительно нагрев в масле до 80–100 градусов по Цельсию, последовательно с элементами передач. Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого в подшипниковые камеры закладывают смазку, ставят крышки подшипников с комплектом металлических прокладок, регулируют тепловой зазор. Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышку винтами. Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель. Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой, закрепляют крышку болтами. Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.

Заключение

При выполнении курсового проекта по «Деталям машин» были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение.

Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, технологических, экономических и других нормативов.

В ходе решения поставленной передо мной задачей, была освоена методика выбора элементов привода, получены навыки проектирования, позволяющие обеспечить необходимый технический уровень, надежность и долгий срок службы механизма.

Опыт и навыки, полученные в ходе выполнения курсового проекта, будут востребованы при выполнении, как курсовых проектов, так и дипломного проекта.

Можно отметить, что спроектированный редуктор обладает хорошими свойствами по всем показателям.

По результатам расчета на контактную выносливость действующие напряжения в зацеплении меньше допускаемых напряжений.

По результатам расчета по напряжениям изгиба действующие напряжения изгиба меньше допускаемых напряжений.

Расчет вала показал, что запас прочности больше допускаемого.

Необходимая динамическая грузоподъемность подшипников качения меньше паспортной.

При расчете был выбран электродвигатель, который удовлетворяет заданные требования.

Список использованной литературы

1. Чернавский С.А., Боков К.Н., Чернин И.М., Ицкевич Г.М., Козинцов В.П. "Курсовое проектирование деталей машин": Учебное пособие для учащихся. М.:Машиностроение, 1988 г., 416 с.

2. Дунаев П.Ф., Леликов О.П. "Конструирование узлов и деталей машин", М.: Издательский центр "Академия", 2003 г., 496 c.

3. Шейнблит А.Е. "Курсовое проектирование деталей машин": Учебное пособие, изд. 2-е перераб. и доп. – Калининград: "Янтарный сказ", 2004 г., 454 c.: ил., черт. – Б.ц.

4. Березовский Ю.Н., Чернилевский Д.В., Петров М.С. "Детали машин", М.: Машиностроение, 1983 г., 384 c.

5. Боков В.Н., Чернилевский Д.В., Будько П.П. "Детали машин: Атлас конструкций. М.: Машиностроение, 1983 г., 575 c.

6. Гузенков П.Г., "Детали машин". 4-е изд. М.: Высшая школа, 1986 г., 360 с.

7. Детали машин: Атлас конструкций / Под ред. Д.Р. Решетова. М.: Машиностроение, 1979 г., 367 с.

8. Дружинин Н.С., Цылбов П.П. Выполнение чертежей по ЕСКД. М.: Изд-во стандартов, 1975 г., 542 с.

9. Кузьмин А.В., Чернин И.М., Козинцов Б.П. "Расчеты деталей машин", 3-е изд. – Минск: Вышейшая школа, 1986 г., 402 c.

10. Куклин Н.Г., Куклина Г.С., «Детали машин» 3-е изд. М.: Высшая школа, 1984 г., 310 c.

11. "Мотор-редукторы и редукторы": Каталог. М.: Изд-во стандартов, 1978 г., 311 c.

12. Перель Л.Я. "Подшипники качения". M.: Машиностроение, 1983 г., 588 c.

13. "Подшипники качения": Справочник-каталог / Под ред. Р.В. Коросташевского и В.Н. Нарышкина. М.: Машиностроение, 1984 г., 280 с.

Расчет мощности и подбор мотор - редуктора

Мощность двигателя для преодоления сопротивлений передвижению определяем по формуле

где: V - скорость передвижения крана, м/с.

з - КПД привода. Ориентировочно - 0,9, /3/;

Так как привод механизма состоит из двух раздельных мотор-редукторов, то мощность каждого определяем по формуле:

Подбор мотор-редуктора производим, также по такой величине, как частота вращения выходного вала, которую определяем через частоту вращения колеса, определяемую по формуле

где - диаметр колеса, м;

V - скорость передвижения крана, м/мин;

Принимаем мотор - редуктор типа МП 3 2 ГОСТ 21356 - 75:

МП 3 2 - 63, /1/, имеющего следующие характеристики:

Номинальная мощность, кВт 5,50

Номинальная частота вращения выходного вала, мин- 1 45

Допустимый вращающий момент на выходном валу, Н*м 1000

Тип электродвигателя 4А112М4Р3

Частота вращения электродвигателя, мин- 1 1450

Диаметр конца выходного вала, мм 55

Масса мотор - редуктор, кг 147

Очевидно, что применение мотор - редуктора вместо обычной схемы позволяет снизить вес привода почти в три раза, и тем самым снизить стоимость реконструкции.

Подбор муфты

Для соединения валов мотор - редуктора и колеса принимаем муфту упругую втулочно-пальцевую МУВП-320. Проверим муфту по крутящему моменту, по формуле:

Где К - коэффициент режима работы, К=2,25, /3/;

Крутящий момент на валу муфты, Н*М;

Максимальный крутящий момент, передаваемый муфтой, Нм 4000

Момент инерции муфты, кг·м 2; 0,514

Масса, кг 13,3

Расчет тормозного момента и выбор тормоза

Тормозной момент, по которому подбирается тормоз механизма передвижения, должен быть таким, чтобы обеспечить остановку крана на определенном тормозном пути.

С другой стороны, он не должен быть слишком большим, иначе в процессе торможения может произойти пробуксовывание колес относительно рельса. Поэтому максимальный тормозной момент определяется из условия достаточного сцепления ходовых колес с рельсом.

Максимально допустимое значение, при котором обеспечивается заданный запас сцепления колес с рельсом, равный 1,2; для механизмов передвижения мостовых кранов /3/, определяем по формуле (10):

Принимаем движение при торможении равнозамедленным, получим минимальное время торможения по формуле (11):

Зная время торможения, определим необходимый тормозной момент по формуле:


Где - общая масса крана, кг;

Диаметр ходового колеса, м;

Частота вращения двигателя, мин- 1 ;

Передаточное число редуктора;

з - КПД привода;

(?J)I - суммарный момент инерции;

Где момент инерции ротора, кг*м 2 ;0,040. /10/;

Момент инерции муфты и тормозного шкива: 0,095 кг*м 2 , /3/;

(?J)I = 0,040+0,095=0,135 ;

Определим диаметр тормозного шкива по формуле (28):

Ширина тормозного шкива, мм 95

Диаметр вала, мм 42

Масса, кг 9,2

По определенному тормозному моменту принимаем тормоз ТКГ - 200, имеющего следующие характеристики /11/:

Номинальный тормозной момент, Н*М 250

Диаметр тормозного шкива, мм 200

Ход толкателя, мм 32

Отход колодки, мм 1,0

Тип толкателя, ТГМ-25

Масса, кг 37,6

Проверка на сцепление ходовых колес с рельсом

Проверку на сцепление ходовых колес с рельсом осуществляем по условию (3.13); ускорение пуска определяем по формуле (3.14); для этого по формуле (3.15) определим время пуска; по формуле (3.16) определим момент сопротивления движению крана без груза:

Определим средний пусковой момент по формуле

Где - номинальный момент двигателя, Нм;

Определим номинальный момент по формуле:

Где - мощность двигателя,кВт;

Частота вращения вала двигателя, мин - 1 ;


Условие К сц?1,2 выполняется, пробуксовка ведущих колес крана исключена.

Проверка электродвигателя по условию пуска

Полученное значение времени пуска может удовлетворять условию сцепления ходовых колес с рельсом, но не удовлетворять условию пуска электродвигателя.

Осуществим проверку двигателя по условию пуска, которое записывается:

Где [f] - допустимый коэффициент перегрузки,

[f] = 2,0; /10/;

Пусковой момент двигателя, Нм.

Условие f < [f] выполняется. По условию пуска электродвигатель подходит.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!