Внутреннее дыхание и транспорт газов. Этапы процесса дыхания. Транспорт газов кровью Что транспортирует газы в организме

Переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким является кровь. В свободном (растворенном) состоянии переносится лишь небольшое количество этих газов. Основное количество кислорода и углекислого газа переносится в связанном состоянии.

Транспорт кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу связывается с гемоглобином, образуя оксигемоглобин. Скорость связывания кислорода велика: время полунасыщения гемоглобина кислородом около 3 мс. Один грамм гемоглобина связывает 1,34 мл кислорода, в 100 мл крови 16 г гемоглобина и, следовательно, 19,0 мл кислорода. Эта величина называется кислородной емкостью крови (КЕК).

Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выражается кривой диссоциации оксигемоглобина (рис. 6.3).

На рисунке видно, что даже при небольшом парциальном давлении кислорода (40 мм рт. ст.) с ним связывается 75-80% гемоглобина.

При давлении 80-90 мм рт. ст. гемоглобин почти полностью насыщается кислородом.

Рис. 6.3.

Кривая диссоциации имеет 5-образную форму и состоит из двух частей - крутой и отлогой. Отлогая часть кривой, соответствующая высоким (более 60 мм рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода, несмотря на умеренное снижение его парциального давления во вдыхаемом воздухе. В этих условиях ткани достаточно снабжаются кислородом (точка насыщения).

Крутая часть кривой диссоциации соответствует напряжению кислорода, обычному для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оксигемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует.

Свойство гемоглобина - легко насыщаться кислородом даже при небольших давлениях и легко его отдавать - очень важно. Благодаря легкой отдаче гемоглобином кислорода при снижении его парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела (рис. 6.4 ).

Рис. 6.4.

А - в зависимости от реакции среды (pH); Б - от температуры; В - от содержания солей; Г - от содержания углекислого газа. По оси абцисс - парциальное давление кислорода (в мм рт. ст.), по оси ординат - степень насыщения (в %)

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина (рис. 6.4, А).

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, как и не происходит полной отдачи кислорода при снижении его парциального давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови (см. рис. 6.4, В).

Особое значение в связывании гемоглобина с кислородом имеет содержание углекислого газа в крови: чем больше его содержание в крови, тем меньше связывается гемоглобина с кислородом и тем быстрее происходит диссоциация оксигемоглобина. На рис. 6.4, Г показаны кривые диссоциации оксигемоглобина при разном содержании углекислого газа в крови. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении углекислого газа, равном 46 мм рт. ст., т.е. при величине, соответствующей напряжению углекислого газа в венозной крови. Влияние углекислого газа на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество углекислого газа и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же по мере выделения углекислого газа из венозной крови в альвеолярный воздух с уменьшением содержания углекислого газа в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Транспорт углекислого газа. Известны три формы транспорта двуокиси углерода:

  • физически растворенный газ - 5-10%, или 2,5 мл/100 мл крови;
  • химически связанный в бикарбонатах: в плазме NaHC0 3 , в эритроцитах КНС0 3 - 80-90%, т.е. 51 мл/100 мл крови;
  • химически связанный в карбаминовых соединениях гемоглобина - 5-15%, или 4,5 мл/100 мл крови.

Углекислый газ непрерывно образуется в клетках и диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту. Этот процесс катализируется (ускоряется в 20 000 раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Поэтому гидратация углекислого газа происходит практически только в эритроцитах. В зависимости от напряжения углекислого газа карбоангидраза катализируется с образованием угольной кислоты, так и расщеплением ее на углекислый газ и воду (в капиллярах легких).

Часть молекул углекислого газа соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин.

Благодаря указанным процессам связывания напряжение углекислого газа в эритроцитах оказывается невысоким. Поэтому все новые количества углекислого газа диффундируют внутрь эритроцитов. Концентрация ионов НС0 3 - , образующихся при диссоциации солей угольной кислоты, в эритроцитах возрастает. Мембрана эритроцитов обладает высокой проницаемостью для анионов. Поэтому часть ионов НС0 3 - переходит в плазму крови. Взамен ионов НС0 3 - в эритроциты из плазмы входят ионы С1 _ , отрицательные заряды которых уравновешиваются ионами К + . В плазме крови увеличивается количество бикарбоната натрия (NaHC0 3 -).

Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Для связывания большей части углекислого газа исключительно большое значение имеют свойства гемоглобина как кислоты. Окси- гемоглобин имеет константу диссоциации в 70 раз большую, чем дезоксигемоглобин. Оксигемоглобин - более сильная кислота, чем угольная, а дезоксигемоглобин - более слабая. Поэтому в артериальной крови оксигемоглобин, вытеснивший ионы К + из бикарбонатов, переносится в виде соли КНЬ0 2 . В тканевых капиллярах КНЬ0 2 отдает кислород и превращается в КНЬ. Из него угольная кислота как более сильная вытесняет ионы К + :

Таким образом, превращение оксигемоглобина в гемоглобин сопровождается увеличением способности крови связывать углекислый газ. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов (К +), необходимых для связывания угольной кислоты в форме бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин, а в плазме крови увеличивается количество бикарбоната натрия. В таком виде углекислый газ переносится к легким.

В капиллярах малого круга кровообращения напряжение углекислого газа снижается. От карбогемоглобина отщепляется С0 2 . Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на воду и углекислый газ. Ионы НС0 3 “ входят в эритроциты, а ионы СГ входят в плазму крови, где уменьшается количество бикарбоната натрия. Углекислый газ диффундирует в альвеолярный воздух. Схематически все эти процессы представлены на рис. 6.5 .

Рис. 6.5.

  • См.: Физиология человека / Под ред. А. Косицкого.
  • См.: Леонтьева Н.Н, Маринова К.В. Указ. соч.

При изучении внешнего дыхания используются следующие понятия:

Альвеолярный воздух – содержащийся в альвеолах после нормального выдоха;

Выдыхаемый воздух – первые порции выдыхаемого воздуха, представляют смесь альвеолярного воздуха и воздуха мертвого пространства.

Состав воздуха в %

В результате газообмена между кровью и альвеолярным воздухом происходит превращение венозной крови в артериальную.

Факторы, определяющие диффузию газов в легких.

I Альвеолярно – капиллярный градиент.

II Отношение вентиляции к перфузии.

III Длина пути перфузии.

IV Диффузионная способность газов.

V Площадь диффузии.

1) Разность парциального давления и напряжения.

Парциальное давление это часть давления смеси газов, приходящаяся на долю одного газа.

Парциальное давление зависит:

б) от величины общего давления: Рассчитывается по следующей формуле.

Например О 2 в атмосферном воздухе

100% газ – 760мм рт. ст.

х = 159мм рт. ст. в атмосферном воздухе.

При расчете парциального давления газа в альвеолярном воздухе нужно учитывать давление находящихся там водяных паров = 47мм рт. ст.

Парциальное напряжение газа – это сила, с которой растворенный в жидкости газ стремится покинуть ее. Обычно устанавливается динамическое равновесие между газом в жидкости и над жидкостью.

В малом круге кровообращения О 2 идет в венозную кровь из легких, а СО 2 из крови в легкие.

Движущей силой является альвеолярно-капилярный градиент.

Для О 2 АКГ = 60мм рт. ст., для СО 2 – 6мм рт. ст. Т.е. диффузионные свойства у СО2 выше, чем у О 2 .

2) Отношение вентиляции к перфузии = МАВ/МОК = 4 – 6 / 4,5 – 5 = 0,8 – 1,1 – в норме.

Вентиляция и перфузия легких должны соответствовать друг другу. Однако распределение кровотока по легким у человека не равномерное. Зависит от положения тела и изменяется под влиянием гравитации. В вертикальном положении величина Q кровотока на единицу объема ткани почти линейно убывает снизу в вверх и верхушки легких меньше снабжаются кровью. Лежа кровоток в верхушке увеличивается, в основании не меняется. Однако лежа на спине в задних отделах легких кровоток выше, чем в передних.

При работе кровоток примерно одинаков во всех отделах.

Вертикальное положение оказывает влияние и на вентиляцию. Интенсивность ее увеличивается сверху вниз (как и кровотока).

Однако ВПО не равномерны в разных отделах.

Механизмы, приспосабливающие кровоток к вентиляции – это вазомоторные и бронхомоторные реакции на изменение газового состава альвеолярного воздуха.

Вазоконстрипции при снижении рО 2 в альвеолах, или РСО 2 .

Бронхоконстрипции при ↓ РСО 2 в альвеолярном воздухе.

На ВПО влияют:

а) неравномерность вентиляции отделов легких в различных положениях тела в пространстве;

б) характер легочного кровотока в зависимости от положения тела и активности организма;

в) скорость кровотока

3) Длина пути .

СО 2 ; О 2 проходят путь: альвеолярная стенка + межклеточное пространство + базальная мембрана капилляра + эндотелий капилляра + слой плазмы + мембрана эритроцита. Увеличение длины пути – ухудшение оксигенации крови – обратная зависимость .

5) Площадь диффузии – зависит от поверхности альвеол и капилляров, через которые идет диффузия (зависимость прямая).

Газообмен 02 и СО2 через альвеолярно-капиллярную мембра­ну происходит с помощью диффузии, которая осуществляется в два этапа. На первом этапе диффузионный перенос газов проис­ходит через аэрогематический барьер, на втором - происходит связывание газов в крови легочных капилляров, объем которой оставляет 80-150 мл при толщине слоя крови в капиллярах всего 5-8 мкм. Плазма крови практически не препятствует диффузии газов, в отличие от мембраны эритроцитов.

Структура легких создает благоприятные условия для газооб­мена: дыхательная зона каждого легкого содержит около 300 млн альвеол и примерно такое же число капилляров, имеет площадь 40-140 м 2 при толщине аэрогематического барьера всего 0,3-1,2 мкм.

Особенности диффузии газов количественно харктеризуются через диффузионную способность легких. Для 02 диффузион­ная способность легких - это объем газа, переносимого из альве­ол в кровь в 1 минуту при градиенте альвеолярно-капиллярного давления газа, равном 1 мм рт.ст.

Движение газов происходит в результате разницы парциаль­ных давлений. Парциальное давление - это та часть давления, которую составляет данный газ из общей смеси газов. Понижен­ное давление 0„ в ткани способствует движению кислорода к ней. Для СО2 градиент давления направлен в обратную сторону, и СО с выдыхаемым воздухом уходит в окружающую среду. Изучение физиологии дыхания фактически сводится к изучению этих гра­диентов и того, как они поддерживаются.

Градиент парциального давления кислорода и углекислого га­за это сила, с которой молекулы этих газов стремятся проникнуть через альвеолярную мембрану в кровь. Парциальное напряжение газа в крови или тканях - это сила, с которой молекулы раство­римого газа стремятся выйти в газовую среду.

На уровне моря атмосферное давление составляет в среднем 760 мм рт.ст., а процентное содержание кислорода - около 21%. В этом случае р02 в атмосфере составляет: 760 х 21/100=159 мм рт.ст. При вычислении парциального давления газов в альвеоляр­ном воздухе следует учитывать, что в этом воздухе присутствуют пары воды (47 мм рт.ст.). Поэтому это число вычитают из значения

атмосферного давления, и на долю парциального давления газов приходится (760 - 47) == 713 мм рт.ст. При содержании кислорода в альвеолярном воздухе, равном 14 %, его парциальное давление бу­дет 100 мм рт. ст. При содержании двуокиси углерода, равном 5,5%, парциальное давление Сопоставит примерно 40 мм рт.ст.

В артериальной крови парциальное напряжение кислорода достигает почти 100 мм рт.ст., в венозной крови - около 40 мм рт.ст., а в тканевой жидкости, в клетках - 10 - 15 мм рт.ст. Напря­жение углекислого газа в артериальной крови составляет около 40 мм рт.ст., в венозной - 46 мм рт.ст., а в тканях - до 60 мм рт.ст.


Газы в крови находятся в двух состояниях: физически раство­ренном и химически связанном. Растворение происходит в соот­ветствии с законом Генри, согласно которому количество газа, растворенного в жидкости, прямо пропорционально парциально­му давлению этого газа над жидкостью. На каждую единицу пар­циального давления в 100 мл крови растворяется 0,003 мл 02, или 3 мл/л крови.

Каждый газ имеет свой коэффициент растворимости. При температуре тела растворимость СО2 в 25 раз больше, чем 02. Из-за хорошей растворимости углекислоты в крови и тканях СО2 пе­реносится в 20 раз легче, чем 02. Стремление газа переходить из жидкости в газовую фазу называют напряжением газа. В обыч­ных условиях в 100 мл крови находится в растворенном состоя­нии всего 0,3 мл 02 и 2,6 мл СО2. Такие величины не могут обеспе­чить запросы организма в 02.

Газообмен кислорода между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента 02 между этими средами. Транспорт кислорода начинается в капилля­рах легких, где основная масса поступающего в кровь 02 вступает в химическую связь с гемоглобином. Гемоглобин способен избира­тельно связывать 02 и образовывать оксигемоглобин (НвО2). Один грамм гемоглобина связывает 1,36 - 1,34 мл О 2 а в 1 литре крови со­держится 140-150 г гемоглобина. На 1 грамм гемоглобина прихо­дится 1,39 мл кислорода. Следовательно, в каждом литре крови максимально возможное содержание кислорода в химически свя­занной форме составит 190 - 200 мл 02, или 19 об% - это кислород­ная емкость крови. Кровь человека содержит примерно 700-800 г гемоглобина и может связывать 1 л кислорода.

Под кислородной емкостью крови понимают количество О 2которое связывается кровью до полного насыщения гемоглобина. Изменение концентрации гемоглобина в крови, например, при анемиях, отравлениях ядами изменяет ее кислородную емкость. При рождении в крови у человека более высокие значения кисло­родной емкости и концентрации гемоглобина. Насыщение крови кислородом выражает отношение количества связанного кисло­рода к кислородной емкости крови, т.е. под насыщением крови 0^

подразумевается процент оксигемоглобина по отношению к име­ющемуся в крови гемоглобину. В обычных условиях насыщение 0^ составляет 95-97%. При дыхании чистым кислородом насы­щение крови 0^ достигает 100%, а при дыхании газовой смесью с низким содержанием кислорода процент насыщения падает. При 60-65% наступает потеря сознания.

Зависимость связывания кислорода кровью от его парциаль­ного давления можно представить в виде графика, где по оси аб­сцисс откладывается р02 в крови, по ординате - насыщение ге­моглобина кислородом. Этот график - кривая диссоциации окси­гемоглобина, или сатурационная кривая, показывает, какая доля гемоглобина в данной крови связана с 02 при том или ином его парциальном давлении, а какая - диссоциирована, т.е. свободна от кислорода. Кривая диссоциации имеет S-образную форму. Плато кривой характерно для насыщенной 02 (сатурированной) артериальной крови, а крутая нисходящая часть кривой - веноз­ной, или десатурированной, крови в тканях (рис. 21).

Рис. 21. Кривые диссоциации оксигемоглобина цельной крови при различных рН крови (Л) и при изменении температуры (Б}

Кривые 1-6 соответствуют 0°, 10°, 20°, 30°, 38° и 43°С

Сродство кислорода к гемоглобину и способность отдавать 02 в тканях зависит от метаболических потребностей клеток орга­низма и регулируется важнейшими факторами метаболизма тка­ней, вызывающими смещение кривой диссоциации. К этим фак­торам относятся: концентрация водородных ионов", температура, парциальное напряжение углекислоты и соединение, которое на­капливается в эритроцитах - это 2,3-дифосфоглицератфосфат (ДФГ). Уменьшение рН крови вызывает сдвиг кривой диссоциации вправо, а увеличение рН крови - сдвиг кривой влево. Вслед­ствие повышенного содержания СО2 в тканях рН также меньше, чем в плазме крови. Величина рН и содержание СО2 в тканях ор­ганизма изменяют сродство гемоглобина к О 2 Их влияние на кри­вую диссоциации оксигемоглобина называется эффектом Бора (Х.Бор, 1904). При повышении концентрации водородных ионов и парциального напряжения СО2 в среде сродство гемоглобина к кислороду снижается. Этот «эффект» имеет важное приспособительное значение: СО2 в тканях поступает в капилляры, поэтому кровь при том же р02 способна освободить больше кислорода. Образующийся при расщеплении глюкозы метаболит 2,3-ДФГ также снижает сродство гемоглобина к кислороду.

На кривую диссоциации оксигемоглобина оказывает влияние также и температура. Рост температуры значительно увеличивает скорость распада оксигемоглобина и уменьшает сродство гемо­глобина к О 2 Увеличение температуры в работающих мышцах способствует освобождению О 2 Связывание 02 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена). Диф­фузия СО2 из крови в альвеолы обеспечивается за счет поступле­ния растворенного в плазме крови СО2 (5- 10%), из гидрокарбо­натов (80-90%) и, наконец, из карбаминовых соединений эрит­роцитов (5- 15%), которые способны диссоциировать.

Углекислый газ в крови находится в трех фракциях: физичес­ки растворенный, химически связанный в виде бикарбонатов и химически связанный с гемоглобином в виде карбогемоглобина. В венозной крови углекислого газа содержится всего 580 мл. При этом на долю физически растворенного газа приходится 25 мл, на долю карбогемоглобина - около 45 мл, на долю бикарбонатов - 510 мл (бикарбонатов плазмы - 340 мл, эритроцитов - 170 мл). В артериальной крови содержание угольной кислоты меньше.

От парциального напряжения физически растворенного уг­лекислого газа зависит процесс связывания СО2 кровью. Углекис­лота поступает в эритроцит, где имеется фермент карбоангидраза, который может в 10 000 раз увеличить скорость образования угольной кислоты. Пройдя через эритроцит, угольная кислота превращается в бикарбонат и переносится к легким.

Эритроциты переносят в 3 раза больше СО2, чем плазма. Бел­ки плазмы составляют 8 г на 100 см 3 крови, гемоглобина же содер­жится в крови 15 г на 100 см 3 . Большая часть СО2 транспортирует­ся в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2.

Кроме физически растворенного в плазме крови молекуляр­ного СО2 из крови в альвеолы легких диффундирует СО 2 кото­рый высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быст­

рой диссоциации с помощью содержащегося в эритроцитах фер­мента карбоангидразы. Этот фермент в плазме отсутствует. Би­карбонаты плазмы для освобождения СО2 должны сначала про­никнуть в эритроциты, чтобы подвергнуться действию карбоан­гидразы. В плазме находится бикарбонат натрия, а в эритроци­тах - бикарбонат калия. Мембрана эритроцитов хорошо прони­цаема для СО2, поэтому часть СО2 быстро диффундирует из плаз­мы внутрь эритроцитов. Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритро­цитов.

Следует отметить, что процесс выведения СО2 из крови в аль­веолы легкого менее лимитирован, чем оксигенация крови, так как молекулярный СО2 легче проникает через биологические мембраны, чем 0^.

Различные яды, ограничивающие транспорт 0^, такие как СО, нитриты, ферроцианиды и многие другие, практически не действуют на транспорт СО2. Блокаторы карбоангидразы также никогда полностью не нарушают образование молекулярного СО2. И наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О 2 Выведение СО2 легкими может на­рушиться при значительном уменьшении легочной вентиляции (гиповентиляции) в результате заболевания легких, дыхательных путей, интоксикации или нарушении регуляции дыхания. За­держка СО2 приводит к дыхательному ацидозу - уменьшению концентрации бикарбонатов, сдвигу рН крови в кислую сторону. Избыточное выведение СО2 при гипервентиляции во время ин­тенсивной мышечной работы, при восхождении на большие вы­соты может вызвать дыхательный алкалоз, сдвиг рН крови в ще­лочную сторону.

Переносчиком O2 от легких к тканям и С02 от тканей в легкие является кровь. В растворенном состоянии в плазме крови дыхательных газов переносится мало. 6 основном они транспортируются в связанном состоянии.

Транспортировку кислорода. Количество растворенного в крови кислорода составляет 0,03 мл на 1 л крови / мм рт. ст. В артериальной крови Ро2 = 100 мм рт. ст., поэтому в 1 л ее транспортируется растворенного кислорода только 3 мл.

Главная часть O2 транспортируется кровью в виде химического соединения с гемоглобином - оксигемоглобин: Нb + O2 → НbO2. В связи с тем, что гемоглобин состоит из 4 субъединиц, 1 моль гемоглобина может связать 4 моли О2. Это означает, что 1 г Нb присоединяет 1,34 мл O2 (число Хюфнер). Зная число Хюфнер (1,34) и количество гемоглобина ВИЧ крови (150 г), можно рассчитать кислородную емкость крови (КЕК), которая составит: 1,34 мл O2 150 = 200 мл О2 / л. КЕК - это максимальное количество O2, который может связать кровь при полном насыщении гемоглобина кислородом.

Однако в естественных условиях гемоглобин оксигенуеться не полностью. Согласно закону действующих масс, насыщения гемоглобина кислородом (в%) зависит от напряжения кислорода (Ро2) в крови. Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина, что S-образную форму (рис. 11.14). Комбинация первого гема в молекуле Нb с O2 усиливает сродство второго тему для O2, а оксигенация другой - усиливает сродство третьего и так далее, следовательно, родство Нb для четвертой молекулы O2 в несколько раз больше, чем для первой.

Когда напряжение O2 равна 0, в крови находится восстановленный гемоглобин - дезоксигемоглобин. Повышение напряжения O2 сопровождается увеличением количества оксигемоглобина, но этот прирост имеет не линейный характер, а S-образный. Особенно быстро нарастает концентрация оксигемоглобина при повышении Ро2 от 10 до 40 мм рт. ст. При Ро2 равном 60 мм рт. ст. оксигемоглобин достигает 90%. При дальнейшем нарастании Ро2 насыщения гемоглобина крови идет очень медленно и кривая диссоциации переходит из крутого к пологому роста.

Пологая часть свидетельствует, что в этих условиях содержание оксигемоглобина мало зависит от напряжения кислорода (Ро2) и его парциального давления во вдыхаемом и альвеолярном воздухе. Например, при поднятии на высоту 2 км атмосферное давление снижается с 760 до 600 мм рт. ст., а содержание оксигемоглобина - на 3%. Таким образом, пологая часть кривой диссоциации отражает способность связывать большее количество 02, несмотря на умеренное снижение парциального давления во вдыхаемом воздухе.

Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует о благоприятной ситуации для отдачи кислорода тканям. При необходимости органов в кислороде он должен высвобождаться в достаточном количестве даже в условиях отсутствия значительных сдвигов Ро2 в артериальной крови. В состоянии покоя Ро2 в области венозного конца капилляра составляет 40 мм рт. ст. (5,3 кПа), что соответствует 73 % насыщения (см. Рис. 11.14).

РИС. 11.14. Кривая диссоциации оксигемоглобина в норме - красная линия, и под влиянием родственных кислорода факторов - коричневая и синяя. Стрелочки вверх - увеличение величины действующих факторов, вниз - их уменьшения. Факторами, влияющими на сродство гемоглобина к кислороду, являются: pH, Рсо2, температура, концентрация 2,3-дифосфоглицерата (2,3-ДФГ), HbF

Смещение кривой диссоциации оксигемоглобина вправо. Уменьшение pH, увеличение Рсо2, повышение температуры крови, увеличение концентрации в эритроцитах 2,3-ДФГ сдвигает кривую справа - это значит, что при том же Ро2 диссоциация оксигемоглобина увеличивается: НЬ + 02 "- НЬ02. Это имеет место в капиллярах, которые приносят кровь к мышцам во время физической работы, когда снижается pH, повышается Рсо2, растет температура крови.

Эритроциты богаты 2,3-ДФГ, который является продуктом гликолиза. Это високообминний анион, который присоединяется к β-цепей дезоксигемоглобином. Один моль дезоксигемоглобином связывает 1 моль 2,3-ДФГ: НbO2 + 2.3-ДФГ → Нb-2,3-ДФГ + O2.

К факторам, которые влияют на концентрацию 2.3-ДФГ в эритроцитах, принадлежит pH. Поскольку ацидоз ингибирует гликолиз в эритроцитах, то при снижении pH концентрация 2,3-ДФГ уменьшается. При гипоксии увеличивается интенсивность гликолиза и соответственно - концентрация 2,3-ДФГ, что способствует увеличению диссоциации оксигемоглобина. Такие изменения имеют место при адаптации человека к гипоксии в условиях высокогорной местности.

Гемоглобин плода - фетальный гемоглобин (HbF) имеет большее сродство к кислороду, чем гемоглобин взрослых - НbА, что облегчает поступление кислорода от матери к плоду.

Смещение кривой диссоциации оксигемоглобина влево. При росте pH, снижении Рсо2, температуры и концентрации 2,3-ДФГ кривая диссоциации оксигемоглобина смещается влево; это означает, что меньше кислорода диффундирует в клетки организма.

Транспортировка СO7. Углекислый газ транспортируется кровью в виде:

■ физически растворенного (СО2) и в форме угольной кислоты (Н7С03) - 12%;

■ карбаминовой соединения (NHCOOH), упрощенно - карбогемоглобин 11%;

■ бикарбонатных ионов в эритроцитах - 27%;

■ остальные - 50% растворенные в плазме в форме НСО3-.

Напряжение СО2 в артериальной крови, поступающей в тканевые капилляры, составляет 40 мм рт. ст. В клетках вследствие метаболизма образуется значительное количество СО2 (Рсо2 - 70 мм рт. Ст.), Который благодаря градиенту напряжения диффундирует в плазму крови и в эритроциты.

В эритроцитах большая часть СО2 связывается с водой и под воздействием фермента карбоангидразы образуется угольная кислота СО2 + Н2О = Н2СO3, которая распадается на ион водорода и бикарбонат Н2СO3 → H + + НСО 3. НСO3 переходит в плазму в обмен на анион хлора (хлоридное сдвиг) (рис. 11.15). Ион Н + связывается с восстановленным НЬ (дезоксигемоглобином), образуя слабую кислоту ННb, которая соединяется с СО2.

В то же время кислород диффундирует в клетки организма, способствует диффузии СО2 в кровь, потому дезоксигемоглобин является слабой кислотой, чем оксигемоглобин, и может присоединять больше ионов водорода, в результате чего повышается степень диссоциации Н2СO3 → Н + + НСО 3, увеличивается транспортировки СО2 кровь "ю (эффект Холдейна).

В плазме НСО3- взаимодействует с катионами и создает соли угольной кислоты (NaHCO3), которые транспортируются в легочных капилляров.

Небольшая часть СО2 в эритроцитах соединяется с конечными аминогруппами глобиновой части молекулы гемоглобина, образуя соединение карбамата: HbNH2 + СО2 = HbNHCOOH + Н +. Кроме этого, карбаминови соединения в малом количестве образуются с белками плазмы крови.

В легких все реакции идут наоборот. НСО3- входит в эритроциты в обмен на ионы Сl - . Ионы Н + вместе с ионами НСО3- образуют Н2СO3, которая расщепляется под воздействием карбоангидразы на СО2 и Н2О. Углекислый газ диффундирует в альвеолы и выдыхается.

Дыханием называется совокупность процессов, в результате которых происходит потребление организмом кислорода и выделение углекислого газа. Процессы эти обеспечивают газообмен в условиях, когда клетки организма непосредственно с вешней средой не контактируют.

Дыхание объединяет следующие процессы: 1) внешнее дыхание, 2) диффузию газов в легких, 3) транспорт газов кровью, 4) диффузию газов в тканях, 5) потребление кислорода клетками и выделение ими углекислого газа (т.н. внутреннее дыхание). В курсе физиологии рассматриваются обычно вопросы, связанные с течением первых четырех процессов, механизмы их регуляции и особенности протекания в различных условиях. Внутреннее дыхание исследуется в курсах биохимии и биофизики.

Внешнее дыхание .

Внешнее дыхание, т.е. обмен воздуха между альвеолами легких и внешней средой, осуществляется в результате ритмических дыхательных движений.

Механизм вдоха . Акт вдоха (инспирация ) совершается вследствие увеличения объема грудной клетки, а, следовательно, и грудной полости, в трех направлениях - вертикальном, сагиттальном и фронтальном. Это происходит вследствие поднятия ребер и опускания диафрагмы. Поднятие ребер совершается в результате сокращения наружных межреберных мышц, межреберные промежутки при этом расширяются.

В первые месяцы после рождения дыхательные движения осуществляются в основном за счет сокращения диафрагмы. Новорожденные животные погибают после перерезки диафрагмального нерва. У разных людей в зависимости от возраста и пола, одежды и условия труда дыхание осуществляется преимущественно или за счет межреберных мышц (реберный, грудной тип дыхания), или за счет диафрагмы (диафрагмальный, брюшной тип дыхания.) Тип дыхания не является строго постоянным и может приспособляться к условиям данного момента. При переносе тяжестей грудная клетка фиксируется мышцами туловища и межреберий неподвижно вместе с позвоночником, дыхание же становится диафрагмальным. При беременности - преобладает реберный тип дыхания, причем изменятся в основном поперечный размер грудной клетки.

Механизм выдоха (экспирации ). При вдохе инспираторные мышцы человека преодолевают ряд сил: тяжесть приподнимаемых ребер, эластическое сопротивление реберных хрящей, сопротивление стенок живота и брюшных внутренностей, отдавливающих диафрагму верх. Когда вдох окончен, под влиянием указанных сил ребра опускаются и купол диафрагмы приподнимается. Объем грудной клетки вследствие этого уменьшается, Следовательно, экспирация происходит обычно пассивно, без участия мускулатуры. При форсированном выдохе к этим силам присоединяется сокращение внутренних межреберных мышц, мышц живота и задних зубчатых мышц.

Изменение объема легких при дыхании . Легкие отделены от стенок грудной полости плевральной полостью (щелью). При вдохе, когда объем грудной клетки увеличивается, давление в плевральной полости уменьшается (примерно на 2 мм.рт.ст.), объем легких растет и давление в них падает. Поэтому воздух через воздухоносные пути входит (засасывается) в легкие. При выдохе, когда объем грудной клетки и грудной полости уменьшается, давление в плевральной щели немного увеличивается (на 3-4 мм. рт. ст.), растянутая легочная ткань сжимается, в легких повышается давление и воздух выходит из легких. Непосредственные измерения показывают, что давление в плевральной полости во время вдоха на 9 мм, а во время выдоха на 6 мм ниже атмосферного. Следовательно, в плевральной полости оно отрицательно.

Отрицательное давление в плевральной полости создается эластической тягой легких. Легкие в грудной клетке всегда находятся в растянутом состоянии, причем растяжение это увеличивается во время вдоха. Если вскрыть грудную полость, легкие спадаются и занимают примерно 1/3 грудной полости. Попадание воздуха в плевральную полость называется пневмотораксом . Двусторонний пневмоторакс делает дыхание невозможным и ведет к смерти.

Эластическая тяга легких обусловлена двумя факторами: наличием в стенке альвеол большого количества эластических волокон, и поверхностным натяжением пленки жидкости, покрывающей стенки альвеол. Внутренняя поверхность стенки альвеол покрыта нерастворимой в воде тонкой (10-100 ммк) пленкой фосфолипида, называемого сурфоктантом , который стабилизирует силы поверхностного натяжения. Сурфоктан препятствует слипанию альвеол. При отсутствии этого вещества у новорожденных легкие не расправляются. Сурфортант образуется в т.н. гранулярных пневмоноцитах.

Легочные объемы . При различных положениях грудной клетки легкие содержат

разное количество воздуха. Различают четыре основных положения грудной клетки:

1) положение максимального вдоха, 2) положение спокойного вдоха, 3) положение максимального выдоха, 4) положение спокойного выдоха.

Состояние после спокойного выдоха называют уровнем спокойного дыхания . Он является исходной точкой для определения всех легочных объемов и емкостей.

Объем воздуха, находящееся в легких после максимального вдоха, составляет общую емкость легких (ОЕЛ ). Она состоит из жизненной емкости легких (ЖЕЛ, количества воздуха, которое может быть выдохнуто при максимальном выдохе после максимального вдоха), и остаточного объема (ОО , количества воздуха, которое остается в легких после максимального выдоха).

ЖЕЛ (жизненная емкость легких ) включает в себя состоит три легочных объема: -

- дыхательный объем (ДО) - объем воздуха, обмениваемый при каждом дыхательном цикле;

- резервный объем инспирации (РОИ ) - объем воздуха, который можно вдохнуть при максимальном вдохе после спокойного вдоха;

- резервный объем экспирации (РОЭ ) - объем, который можно выдохнуть при максимальном выдохе после спокойного выдоха.

При спокойном дыхании в легких остается РОЭ и ОО . Сумма их носит название функциональной остаточной емкости (ФОЕ ). Сумма ДО и РОИ называется емкостью вдоха (ЕВ) .

После полного спадения легких при двустороннем пневмотораксе в легких остается т.н. коллапсный воздух, который не дает утонуть легкому человека, сделавшему после рождения хотя бы один вдох.

Считается, что в номе ОО по отношению к ЖЕЛ составляет у здорового взрослого человека 30%, ДО - 15-20%, РОИ и РОЭ - по 40-45%.

Так как легочные объемы зависят от возраста, роста, пола и веса, то для суждения о том, соответствуют ли легочные объемы данного лица нормальным величинам, их следует сравнивать с так называемыми должными величинами. Существует много различных методов расчета должной жизненной емкости легких (ДЖЕЛ ), разные формулы, таблицы и номограммы. Их Вы изучите на занятиях.

В норме ЖЕЛ не должна отличаться от ДЖЕЛ на 15%.

Каждый из легочных объемов и емкостей имеет определенное физиологическое значение. Наиболее широко при различных исследованиях используется ЖЕЛ. Снижение ЖЕЛ происходит при стенозе дыхательных путей, при уменьшении дыхательной поверхности легких, при увеличении кровенаполнения легких (застое, отеках). Кроме этого, ЖЕЛ снижется при всех состояниях, препятствующих максимальному расправлению легкого и грудной клетки (экссудат в плевральной полости, пневмоторакс, пневмония, эмфизема, асцит, беременность, ожирение, окостенение хрящей, мышечная слабость, травма грудной клетки и т.п.).

ДО - (дыхательный объем, глубина дыхания ) связан с поддержанием определенного уровня парциального давления кислорода и углекислоты в альвеолярном воздухе и обеспечивает нормальное напряжение газов в крови. При спокойном дыхании ДО колеблется от 300 до 500 мл. Величина ДО связана частотой дыхания - обычно глубокое дыхание бывает редким, поверхностное - частым. Во время мышечной работы ДО может увеличиваться в несколько раз, становясь близким к ЖЕЛ.

РОИ - (резервный объем вдоха ) определяет способность к увеличению количества вентилируемого воздуха, необходимость в котором имеет место при увеличении потребности организма в кислороде.

РОЭ - (резервный объем выдоха ) закономерно изменяется в зависимости от положения тела: лежа он меньше. Отношение РОИ к РОЭ определяется как уровень дыхания. Считается, что если он ниже 1, то эффективность вентиляции легких больше.

Увеличение ЖЕЛ может быть расценено положительно только в том случае, если ОЕЛ (общая емкость легких) не изменяется или увеличивается, но меньше, чем ЖЕЛ. В таком случае увеличение ЖЕЛ идет за счет уменьшения ОО. Если ЖЕЛ независимо от ее величины и процента ДЖЕЛ будет ниже 70% ОЕЛ, то функцию внешнего дыхания нельзя считать нормальной.

Значение воздухоносных путей . Непосредственно в газообмене участвует только воздух, заполняющий альвеолы. Объем же воздухоносных путей, которые составляет 120-150 мл, называют объемом вредного пространства - ОВП. Изменение просвета бронхов может существенно менять величину ОВП.

Атмосферный воздух, проходя через воздухоносные пути, очищается от пыли, согревается и увлажняется. При поступлении крупных частиц пыли в трахею и бронхи рефлекторно возникает кашель, а при поступлении в нос - чихание. Кашель и чихание - это защитные дыхательные рефлексы, очищающие дыхательные пути от инородных частиц и слизи, которые затрудняют дыхание.

Легочная вентиляция . Число дыхательных движений у взрослого человека в состоянии покоя составляет около 16-18 минуту. Дети дышат чаще (новорожденные - до 40 в минуту).

Произведение объема отдельного вдоха (ДО) на число дыханий в минуту (ЧД) составляет минутный объем дыхания (МОД). Он зависит от работы, положения тела, возраста, пола. При одном и том же МОД степень вентиляции легких зависит от глубины дыхания. Редкое, но более глубокое дыхание значительно эффективнее, так как в этом случае альвеолы вентилируются лучше. Эффективность легочной вентиляции (ЭЛВ) рассчитывают как отношение объема воздуха, входящего в альвеолы при каждом вдохе, к тому объему, который находился в легких перед вдохом. При спокойном дыхании там находится ОО+РОЭ (функциональная остаточная емкость , ФОЕ ). Входит же ДО-ВВП (т.е. дыхательный объем минус воздух вредного пространства). При спокойном дыхании ЭЛВ составляет около 12%, при глубоком - до 25%.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха . Атмосферный воздух, который вдыхает человек, содержит 20,94% кислорода, 0,03% углекислоты и 79,03% азота. Выдыхаемый воздух содержит меньше кислорода - 16,3%, 4% углекислоты и 79,7% азота. Еще меньше кислорода в альвеолярном воздухе - 14,2-14,6%, углекислоты 5,5-5,7%, азота около 80%.

Различие в составе альвеолярного и выдыхаемого воздуха объясняется тем, что последний содержит смесь альвеолярного воздуха и воздуха вредного пространства, состав которого равен атмосферному. Увеличение процент азота объясняется уменьшением объема воздуха в альвеолах за счет того, что количество выделенной углекислоты не всегда соответствует объему поглощенного кислорода, который используется на окисление водорода и образование воды.

Диффузия газов в легких и транспорт газов кровью .

Переносчиком кислорода из альвеолярного воздуха к тканям тела и углекислого газа от тканей тела к легочным альвеолам служит кровь. Рассмотрим, в каком состоянии находятся эти газы в крови и какие факторы обусловливают их поглощение кровью и выделение из крови.

Газы могут находиться в жидкости в состоянии простого физического растворения (абсорбции) и химической связи. При этом количество газа, которое может растворяться в жидкости, зависит от ее состава, объема, давления газов над жидкостью, температуры и природы исследуемого газа, а также количества растворенных в жидкости веществ. Все эти факторы определяют т.н. абсорбционный коэффициент, т.е. тот объем газа, который может раствориться в 100 мл жидкости при 0о С и давлении газа 760 мм. Hg. Чем ниже температура и больше давление, тем больше газа растворяется в жидкости.

Если над жидкостью находится смесь газов, то каждый газ растворяется в ней соответственно его парциальному давлению в смеси. Если газы растворены в жидкости, применяют термин "напряжение", аналогичный термину "давление". В общем случае при соприкосновении жидкости со смесью газов диффузия и растворение их в жидкости определяется разностью парциальных давлений и напряжений этих газов в жидкой и газообразной фазе. Газ по градиенту давления (напряжения) поступает в сторону меньшего давления (напряжения).

Парциальное давление газов во вдыхаемом воздухе равно для кислорода 256 мм Hg, для азота 600 мм Hg. При расчете парциального давления газов в альвеолярном воздухе следует учитывать напряжение в нем водяных паров, парциальное давление которых при температуре тела равно 47 мм Hg. При 14,3% кислорода его парциальное давление в альвеолярном воздухе равно 102 мм Hg, углекислого газа - 5,6% и 40 мм Hg, азота - 80% и 571 мм Hg.

При таком парциальном давлении в альвеолярном воздухе соответственно абсорбционным коэффициентам кислорода и углекислого газа их содержание в 100 мл крови должно было бы быть 0,25 мл кислорода, 2,69 мл углекислоты, 1,04 мл азота. Однако из крови можно извлечь гораздо больше кислорода и углекислоты. Это свидетельствует о том, что эти газы находятся в крови не только в физически растворенном виде, но и в химически связанном состоянии. Кислород почти весь связан с гемоглобином, углекислота - частью с гемоглобином, частью с бикарбонатами.

Максимальное количество кислорода, которое может быть поглощено 100 мл крови, называется удельной кислородной емкостью . Она зависит от содержания в крови Hb. Грамм Hb связывает 1, 34 мл кислорода. Если в крови содержится 140 г/л Hb, то 100 мл крови связывают 19 мл кислорода.В этом случае общая кислородная емкость крови составляет около 95-100 мл., и может удовлетворить потребность организма в кислороде в течение 3-4 минут при условии полной деоксигенации Hb к этому моменту (как у кита)

Артериальная кровь здорового человека содержит 18-20% кислорода, 50-52% углекислоты и около 1% азота. Венозная кровь соответственно 12% кислорода, 55-56% углекислого газа и 1% азота.

Приведенные цифры показывают, что венозная кровь, пройдя по капиллярам легкого, обогащается кислородом и теряет углекислый газ. Артериальная кровь в тканях теряет кислород и обогащается углекислотой. Поскольку азот в газообмене не участвует, содержание его в венозной и артериальной крови одинаково.

Напряжение кислорода в артериальной крови равно 100 мм Hg, углекислого газа 40 мм Hg, в венозной же крови эти цифры составляют соответственно 40 мм О 2 и 46 мм СО 2 . За короткое время пребывания крови в легочных капиллярах напряжение газов в крови практически сравнивается с их парциальным давлением в альвеолярном воздухе.

Анатомо-физиологическая структура легкого создает исключительно благоприятные условия для газообмена. Установлено, что респираторный аппарат представлен 300 миллионами альвеол и приблизительно таким же количеством капилляров. Общая поверхность альвеол составляет около 100 кв. метров, а толщина легочной мембраны всего 0,3-2,0 мк. Физико-химические свойства тканей легочной мембраны таковы, что растворимость в ней кислорода составляет 0,024, а углекислоты 0,567, т.е. почти в 20 раз больше. Это исключает возможность нарушений диффузии углекислоты в любых условиях жизнедеятельности организма.

Скорость диффузии кислорода через легочную мембрану в покое равна у взрослого человека 15-30 мл на 1 мм Hg в минуту. Это значит, что при разнице напряжения кислорода в 1 мм в минуту в кровь поступает 15-30 мл кислорода. При интенсивной мышечной работе эта величина может возрастать до 60 мл, что зависит от расширения легочных капилляров. Скорость диффузии углекислого газа значительно больше.

Количество физически растворенных газов составляет очень небольшую часть общего количества газов, транспортируемых кровью. Это обусловлено способностью крови переносить газы в форме химических соединений, составляющих основную емкость крови. Отношения между растворенными и химически связанными частями газов определяются формулой:

А = К + а Р/760

где А = количество газа в крови, К- количество химически связанного газа, а - коэффициент растворимости, Р - парциальное давление газа в растворе.

Равновесие между кровью и газом определяется в этих условиях не только их растворением, но и тем, что молекулы, проникшие в кровь, все время улавливаются веществами, вступающими с ними в соединение, и следовательно, перестают существовать как свободные молекулы. Только после того, как молекулы, уловленные кровью, насытят всю газовую смесь за счет химического соединения, последующие молекулы остаются свободными и развивают в растворе напряжение, равное парциальному давлению газа в контактирующем с кровью воздухе. Так, из 19% кислорода артериальной крови только 0,3% растворены в крови, остальной газ связан с Hb.

Транспорт кислорода кровью . Кривая диссоциации оксигемоглобина. В условиях равновесия между Нb и кислородом каждой концентрации кислорода в среде, окружающей молекулу Нb, соответствует определенное соотношение Hb и HbO 2 . Кривая, выражающая эту зависимость, получила название кривой диссоциации оксигемоглобина (см. таблицу). Форма и положение кривой имеет важнейшее физиологическое значение. В зоне парциального давления кислорода от 60 до 100 мм Hg, т.е. именно такого, какое существует в альвеолярном воздухе, Hb максимально связывается в кислородом. В то же время напряжение разрядки, т.е. уровень парциального давления кислорода, при котором 50% оксигемоглобина восстанавливается, равно 40 мм Hg. Это напряжение обеспечивает достаточный градиент напряжения кислорода между кровью и тканями.

Увеличение температуры и, что особенно важно, повышение напряжения углекислого газа влекут за собой повышение концентрации водородных ионов в среде (эффект Бора) и сродство Нb к кислороду снижается. Как известно, при протекании крови по капиллярам тканей происходит существенное повышение концентрации водородных ионов в плазме и в содержимом эритроцитов. В результате происходит сдвиг кривой диссоциации оксигемоглобина., сродство Hb к кислороду снижается и возрастает количество кислорода, освобождаемого кровью при данном градиент напряжения. В крови легочных капилляров имеет место обратный процесс.

Один из убедительных примеров биологической значимости эффекта Бора- это сдвиг вправо кривой диссоциации HbO 2 у женщин в конце беременности. Этот сдвиг связан с увеличением концентрации водородных ионов во внутренней среде беременных и обеспечивает 60% оксигенацию крови плода, покидающей плаценту.

Нарастающее поступление в кровь кислых продуктов обмена (молочная кислота и др.) при мышечной работе способствует отдаче большего количества кислорода работающим мышцам.

Транспорт углекислого газа кровью . Кровь переносит 13000 мэкв углекислого газа, продуцируемого организмом в сутки, причем через почки выделяется всего 40-60 мэкв (0,5%), остальное количество (99,5%) выделяется через легкие. Около 80% этого количества переносится в виде соединений с ионами щелочных металлов (бикарбонаты натрия и калия), остальной газ связывается Hb. Образование угольной кислоты из углекислого газа происходит в эритроцитах под влиянием фермента карбоангидразы. В зависимости от напряжения углекислого газа карбоангидраза может ускорить или реакцию связывания углекислого газа и воды, или распад углекислоты.

Способность Hb переносить углекислый газ основана на том, что углекислота может вступать в соединение с веществами, имеющими свободные NH 2 -группы. Так как молекула Нb имеет много таких групп в глобине, то образуется так называемое карбаминовое соединение углекислого газа. При обычной концентрации водородных ионов в крови восстановленный Нb способен за счет карбаминовой связи присоединить около 30% всего подлежащего переносу газа. Присоединение кислорода к Нb уменьшает способность его связывать углекислый газ.

Газообмен в тканях

В тканях кровь отдает кислород и поглощает углекислоту. Как и в легких, движущей силой газообмена является разность парциальных давлений газов в крови и тканях.

Напряжение углекислого газа в клетках может достигать 60 мм Hg. В тканевой жидкости оно весьма изменчиво и в среднем составляет 46 мм Hg, а в притекающей артериальной крови 40 мм. Напряжение углекислого газа в венозной крови становится равным напряжению газа в тканевой жидкости.

Клетки весьма энергично потребляют кислород, поэтому его напряжение в тканях очень мало. В тканевой жидкости напряжение кислорода колеблется между 20 и 40 мм. Вследствие этого кислород непрерывно поступает из крови капилляров в тканевую жидкость и оттуда в клетки.

Кровь, проходя по капиллярам большого круга, отдает не весь свой кислород. Артериальная кровь содержит 20%, венозная - 12% кислорода. То его количество (в процентах от общего содержания в артериальной крови), которое получают ткани, называется коэффициентом утилизации кислорода . Он меняется в зависимости от ряда физиологических условий. Так, если в покое он равен 30-40%, то при мышечной работе может достигать 60%. Более быстрый и более полный переход кислорода в ткани при мышечной работе обеспечивается раскрытием дополнительных капилляров, усиленным образованием кислот, и, следовательно, большей диссоциацией оксигемоглобина, повышением температуры работающего органа и усилением ферментативных и энергетических реакций в его клетках.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!